For the Linear Time-Invariant Continuous (LTI C) System shown above, we have

\[\frac{d^2 y}{dt^2} + \frac{R}{L} \frac{dy}{dt} + \frac{1}{LC} y(t) = x(t) \]

Let \(R = 3 \Omega \), \(L = 1 \) H and \(C = \frac{1}{2} \) F and \(x(t) = u(t) \)

\[\frac{d^2 y}{dt^2} + 3 \frac{dy}{dt} + 2 y(t) = u(t) \]

- We can solve the differential equation and find the total response by using superposition.

\[\text{Total response} = \text{zero-input response} + \text{zero-state response} \]

- Zero-state response is the response due to input when the initial conditions are zero.
- Zero-input response is the response due to initial conditions when the input is zero.

Zero-input response: Let \(v_C(0) = 1 \) and \(i(0) = 1 \).

\[\frac{d^2 y}{dt^2} + 3 \frac{dy}{dt} + 2 y = 0 \]

Characteristic Polynomial: \(\lambda^2 + 3\lambda + 2 = 0 \)

\((\lambda + 1)(\lambda + 2) = 0 \)
Therefore, \(\lambda_1 = -1 \) and \(\lambda_2 = -2 \)

where \(\lambda_1 \) and \(\lambda_2 \) are the solutions of the characteristic polynomial.

Thus, the solution of the differential equation is

\[
y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} = c_1 e^{-t} + c_2 e^{-2t}, \quad t > 0
\]

Now, we can find \(c_1 \) and \(c_2 \) using the initial condition. First, we need to find \(y(0) \) and \(y'(0) \) from \(u_c(0) \) and \(t(0) \).

We know, \(y(0) = u_c(0) = 1 \) \(\text{ (since } y(t) = u_c(t) \) and

\[
y'(t) = c \frac{du_c}{dt} = c \frac{dy(t)}{dt}
\]

\[
\therefore \quad y'(0) = \frac{1}{2} \frac{dy(0)}{dt}
\]

\[
\Rightarrow \quad \frac{dy(0)}{dt} = 2 \quad y(0) = 2
\]

Since \(y(t) = c_1 e^t + c_2 e^{-2t} \) \(\Rightarrow \) \(y(0) = c_1 + c_2 = 1 \)

\[
\therefore \quad y(t) = -c_1 e^{-t} - 2c_2 e^{-2t} \Rightarrow y(0) = -c_1 - 2c_2 = 2
\]

\[
\therefore \quad c_1 + 2c_2 = -2
\]

Using Cramer's rule,

\[
c_1 = \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} = \frac{2+2}{2-1} = 4
\]

\[
c_2 = \begin{vmatrix} 1 & -2 \\ 1 & 2 \end{vmatrix} = \frac{-2-1}{2-1} = -3
\]

\[
\therefore \quad y(t) = 4 e^{-t} - 3 e^{-2t}, \quad t > 0
\]

\[
= (4 e^t - 3 e^{2t}) y(t)
\]
(2) **Zero-State Response**, i.e. response due to input considering initial condition to be zero.

Since the input is a constant voltage of 1V, we can obtain the output which is the voltage across the capacitor by inspection in the steady-state. Since in the steady-state, the capacitor is an open-circuit and the input is a short-circuit, we have

\[V(\infty) = 1V \]

Total response:

\[y(t) = 4e^{-t} - 3e^{-2t} + 1, \quad t \geq 0 \]

\[= (1 + 4e^{-t} - 3e^{-2t})u(t) \]
Example 2:

\[M \frac{d^2 y}{dt^2} + B \frac{dy}{dt} + Ky = x \]

Let \(\frac{B}{M} = 5 \text{ s}^{-1} \), \(\frac{K}{M} = 4 \text{ s}^{-2} \) and \(x(t) = u(t) \)
\(y(0) = 3 \text{ cm}, \quad \dot{y}(0) = 0.0 \text{ cm s}^{-1} \)

Zero-input response (response due to I.C's):

\[\frac{d^2 y}{dt^2} + 5 \frac{dy}{dt} + 4y = 0 \]

\(\lambda^2 + 5\lambda + 4 = 0 \)
\((\lambda + 4)(\lambda + 1) = 0 \)

\(\therefore \ y(t) = c_1 e^{-t} + c_2 e^{-4t} \quad \forall t > 0 \)
\(\dot{y}(t) = -c_1 e^{-t} - 4c_2 e^{-4t} \)

\(y(0) = c_1 + c_2 = 3 \)
\(\dot{y}(0) = -c_1 - 4c_2 = 0 \implies c_1 = -4c_2 \)
\(\therefore -4c_2 + c_2 = 3 \implies c_2 = -1 \)
\(\therefore c_1 = 4 \)

\(\therefore y(t) = (4e^{-t} - e^{-4t})u(t) \)
Zero-State Response (response due to input):
\[\frac{d^2y}{dt^2} + 5 \frac{dy}{dt} + 4y = 1, \quad t \geq 0 \]

Since the input is constant, the particular solution (forced response) of the system is also constant. Therefore, \(\frac{dy}{dt} = \frac{d^2y}{dt^2} = 0 \)

\[\therefore 4y_p = 1 \]
\[\therefore y_p = \frac{1}{4} \]

Total Solution:
\[y(t) = \left(\frac{1}{4} + 4e^{-t} + e^{-4t} \right) u(t) \]

Example 3: Repeat example 2 if \(\frac{B}{M} = 45 \) and \(\frac{K}{M} = 45^2 \).

C.E.:
\[\lambda^2 + 4\lambda + 4 = 0 \implies \lambda_1 = -2 \text{ and } \lambda_2 = -2 \]

Zero-input response is equal to
\[y_i(t) = (c_1 + c_2 t) e^{-2t} \]
\[y(0) = c_1 = 3 \]
\[y'(t) = -2c_1 e^{-2t} + c_2 e^{-2t} - 2c_2 t e^{-2t} \]
\[\therefore y(0) = -2c_1 + c_2 = 0 \implies c_2 = 6 \]
\[\therefore y_i(t) = (3 + 6t) e^{-2t} u(t) \]
and the particular solution \(y_p = \frac{1}{4} \)

\[\therefore y(t) = \left(\frac{1}{4} + (3 + 6t) e^{-2t} \right) u(t) \]
Example 4: Repeat example 2 \(y \frac{B}{M} = 25^2 \) and \(\frac{K}{M} = 10^2 \).

C.E. \(\lambda^2 + 2\lambda + 10 = 0 \)

\[\lambda_{1,2} = \frac{-2 \pm \sqrt{4 - 40}}{2} = -1 \pm j3 = \sigma \pm j\omega \]

The homogeneous solution (response due to initial conditions) is

\[y(t) = (C_1 \cos \omega t + C_2 \sin \omega t) e^{-\sigma t} \quad ; \quad t \geq 0 \]

\[= (C_1 \cos 3t + C_2 \sin 3t) e^{-t} \quad ; \quad t \geq 0 \]

\[y(0) = 3 = C_1 \]

\[y(0) = -C_1 + 3C_2 = 0 \quad \Rightarrow \quad C_2 = 1 \]

\[y(t) = (3 \cos 3t + \sin 3t) e^{-t} \quad , \quad t \geq 0 \]

\[= M e^{-t} \cos (3t + \theta) \]

\[3 \cos 3t + \sin 3t = M \cos (3t + \theta) \]

\[= M (\cos 3t \cos \theta - \sin 3t \sin \theta) \]

\[\Rightarrow \quad 3 = M \cos \theta \quad -1 = M \sin \theta \quad \Rightarrow \quad M = \sqrt{3^2 + 1^2} = \sqrt{10} \]

\[\theta = -\arctan \left(\frac{1}{3} \right) \]

\[= -18.4^\circ \]

\[y(t) = \sqrt{10} e^{-t} \cos (3t - 18.4^\circ) u(t) \]

\[\Rightarrow \quad Total \ response = (\frac{3}{\sqrt{10}} e^{-t} \cos (3t - 18.4^\circ)) u(t) \]