Time Shifted Signals

- Given a continuous-time signal \(x(t) \) and a positive real number \(t \), the signal \(x(t-t) \) is \(x(t) \) shifted to the right by \(t \) seconds and the signal \(x(t+t) \) is \(x(t) \) shifted to the left by \(t \) secs. For example:

\[
\begin{align*}
\text{U}(t-2) & \quad \text{U}(t+2) \\
0 & \quad 2 & \quad -2 & \quad 0 & \quad 2 & \quad 4 \\
1 & \quad 1 & \quad 0 & \quad 2 & \quad 4 \\
\end{align*}
\]

Continuous and Piecewise-Continuous Signals

- A continuous-time signal \(x(t) \) is said to be **discontinuous** at a fixed point \(t \), if

\[
x(t^-) \neq x(t^+) \]

i.e., a signal \(x(t) \) is discontinuous at a point \(t \), if the value of \(x(t) \) "jumps" as \(t \) goes through the point \(t \). For example, the unit step function \(u(t) \) is discontinuous at \(t = 0 \) as shown in the figure below:

\[
x(t) = u(t) \\
x(0^-) = 0 \\
x(0^+) = 1
\]
- A signal \(x(t) \) is continuous at the point \(t \) if
\[
x(t_1^-) = x(t) = x(t_1+)
\]
- If a signal \(x(t) \) is continuous at all points of \(t \), the \(x(t) \) is said to be a continuous signal.

For example, a ramp function, the sinusoids and the triangular function are continuous functions.

Note: The term continuous is used in two different ways, i.e., there is the notion of a continuous-time signal and there is the notion of a continuous-time signal that is continuous.

Representation of Piecewise-Continuous Signals

Example 1:

\[
x(t) = \begin{cases}
2t+1, & 0 \leq t < 1 \\
1, & 1 \leq t \leq 2 \\
-t+3, & 2 \leq t \leq 3 \\
0, & t > 3
\end{cases}
\]

\[
x(t) = (2t+1) [u(t) - u(t-1)] + 1 [u(t-1) - u(t-2)] + (-t+3) [u(t-2) - u(t-3)]
\]

\[
= (2t+1)u(t) - (2t+1)u(t-1) - (1 + t-3)u(t-2) + (t-3)u(t-3)
\]

\[
= (2t+1)u(t) - 2t u(t-1) - (t-2)u(t-2) + (t-3)u(t-3)
\]

Example 2:

\[
x(t) = \begin{cases}
1, & 0 \leq t \leq 2 \\
0, & t > 0
\end{cases}
\]

\[
x(t) = 1[u(t) - u(t-2)]
\]

\[
x(t) = u(t) - u(t-2)
\]