Find the transfer function of the systems whose
Bode plot is given.

1. Starting Slope $\sqrt{\text{dB/dec}} = 0$ dB/dec
 Also Starting Phase $= 0^\circ$

 \therefore We don't have a pole or zero at $s = 0$

 Starting Mag $= 20$ dB $= K_{\text{dB}}$

 $\therefore 20 \log K = K_{\text{dB}} = 20$
 $\therefore K = 10$

 Corner frequency $= 2, 3 \text{ rad/sec}$

 $H(s) = \frac{K}{(1 + \frac{1}{2}s)(1 + \frac{1}{3}s)}$ due to pole

 $= \frac{60}{(s+2)(s+3)}$
2. Starting slope of magnitude = -20 dB/dec
 Also, the starting phase = -90°
 We have a pole at s = 0
 Starting Magnitude = 34 dB
 = K dB + 20
 \[K dB = 14 \]
 \[20 \log K = K dB = 14 \]
 \[K = 5 \]
 Corner frequencies = \[\frac{1}{\sqrt{5}} \quad \frac{5}{\sqrt{5}} \]
 \(\text{Due to pole} \)
 \(\text{due to zero} \)
 \(\text{Because the slope changes from} \)
 \(-20 \text{dB/dec to } 0 \text{ dB/dec,} \)
 \(\text{therefore, there is a change} \)
 \(\text{of } +20 \text{ dB/dec} \)

\[H(s) = \frac{s(1 + \frac{1}{s\sqrt{5}})}{s(1 + \frac{5}{s\sqrt{5}})} \]
\[= \frac{25(s+1)}{s(s+5)} \]
 Also, starting phase = -90°

 \[\therefore \text{There is a pole at } S = 0 \]
 Corner frequencies = 10, 100, 1000 and 2000 rad/s

 • Corner frequency 10 is due to a real zero because the slope changes from -20 dB/dec to 0 dB/dec at 10 rad/sec.
 So, there is a change of 20 dB/dec.

 • Corner freq of 100 is due to a pole at S=100 because the slope changes from 0 dB/dec to -20 dB/dec.

 • Corner freq of 1000 is due to a pole at S=1000 because the slope changes from -20 dB/dec to -40 dB/dec.

 • Corner freq of 2000 is due to a pole at S=2000 because the slope changes from -40 dB/dec to -60 dB/dec.

\[\text{Starting Mag } = 6 \text{ dB } = K_d B + 0 \]

\[20 \log K = K_d B = 6 \]

\[\therefore K = 2 \]

\[H(s) = \frac{2 (1 + \frac{1}{10 s})}{s (1 + \frac{1}{100 s})(1 + \frac{1}{1000 s})(1 + \frac{1}{2000 s})} \]
Bode Diagram

Gm = 44.696 dB (at 1506.7 rad/sec), Pm = 100.19 deg (at 2.0448 rad/sec)
4. Starting slope of magnitude = 20 dB/dec
 Also, the starting phase = 90°

 There is a zero at s = 0

 Corner frequencies: 1, 2 rad/sec
 ↓
 due to a pole

 Starting Mag = -90° + dB = K dB - 20
 \[K dB = 18.06 \]

 \[K dB = 20 \log K \]
 \[K = 8 \]

 \[H(s) = \frac{8s}{(1 + \frac{1}{1}s)(1 + \frac{1}{2}s)} \]

 \[= \frac{16s}{(s+1)(s+2)} \]