

For each of the above configurations for both $\omega=0$ and $\omega=\propto$, determine whether or not the resulting circuit appears as either a resistive circuit, a short circuit, or an open circuit. Check the appropriate blank(s).

For $\omega=0$

Figure
A.
B.
C.
D.

For $\omega=\propto$
Figure
E.
F.
G.
H.

Resistive Circuit
Short Circuit
\qquad
\qquad
\qquad
\qquad
\qquad

Complex Impedance Quiz

Devise formulas for each of the complex impedance configurations using R, X_{C}, and X_{L}.
Hint: Impedances in series add, i.e., $\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$
Two impedances in parallel equal the "product over the sum", i.e. $Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$
A.

E.

C.

F.

D.

G.

H.

Passive Filter Quick Recognition Quiz

For each of the four schematics, indicate whether or not the configuration represents a Low Pass Filter or a High Pass Filter.

Hint: \quad Consider the reactance when $\omega=0$.

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{L}}=0 & \mathrm{~V}_{\mathrm{L}}=0 & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\text {in }} \\
\mathrm{X}_{\mathrm{C}} \gg 0 & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {in }} & \mathrm{V}_{\mathrm{R}}=0
\end{array}
$$

If $V_{\text {out }}=V_{\text {in }}$, then since $\omega=0$, passes low frequencies, hence Low Pass Filter.
If $\mathrm{V}_{\text {out }}=0$, then since $\omega=0$, blocks low frequencies, hence passes only high frequencies, i.e., High Pass Filter.

Similarly: \quad Consider the reactance when $\omega \gg 0$.

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{L}} \gg 0 & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\text {in }} & \mathrm{V}_{\mathrm{R}}=0 \\
\mathrm{X}_{\mathrm{C}}=0 & \mathrm{~V}_{\mathrm{C}}=0 & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\text {in }}
\end{array}
$$

If $V_{\text {out }}=V_{\text {in }}$, then since $\omega \gg 0$, passes high frequencies, hence High Pass Filter.
If $V_{\text {out }}=0$, then since $\omega \gg 0$, blocks high frequencies, hence passes only low frequencies, i.e., Low Pass Filter.
A.

B.

C.

D.

A. \qquad
C. \qquad D. \qquad

