Principle of Superposition

Problem

Determine the voltage across resistor R in the circuit of Figure 3.30.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of Figure 3.30 are $I_B = 12$ A; $V_G = 12$ V; $R_B = 1 \Omega$; $R_G = 0.3 \Omega$; $R = 0.23 \Omega$.

Find: The voltage across R.

(a)

Figure 3.30 (a) Circuit used to demonstrate the principle of superposition

Figure 3.30 (b) Circuit

obtained by suppressing the

voltage source

0

Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and apply KCL:

$$-I_B + \frac{V_{R-I}}{R_B} + \frac{V_{R-I}}{R_G} + \frac{V_{R-I}}{R} = 0$$
$$V_{R-I} = \frac{I_B}{1/R_B + 1/R_G + 1/R} = \frac{12}{1/1 + 1/0.3 + 1/0.23} = 1.38 \text{ V}$$

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as shown in Figure 3.30(c), and apply KCL:

$$\frac{V_{R-V}}{R_B} + \frac{V_{R-V} - V_G}{R_G} + \frac{V_{R-V}}{R} = 0$$
$$V_{R-V} = \frac{V_G/R_G}{1/R_B + 1/R_G + 1/R} = \frac{12/0.3}{1/1 + 1/0.3 + 1/0.23} = 4.61 \text{ V}$$

Finally, we compute the voltage across R as the sum of its two components:

$$V_R = V_{R-I} + V_{R-V} = 5.99 \text{ V}$$

Figure 3.30 (c) Circuit obtained by suppressing the current source

(c)

Fundamental of Electrical Engineering, Giorgio Rizzoni, McGraw-Hill, 2009

Ideal Transformer Relations (Equations)

Definitions:

Primary Winding (input - subscript 1) Secondary Winding (output - subscript 2)

Turns Ratio = n_1 / n_2 (number of turns on primary winding / number of turns on secondary winding)

Voltage Ratio:	$V_1 / V_2 = n1 / n_2$ (Directly Proportional)
Current Ratio:	$I_1 / I_2 = n_2 / n_1$ (Inversely Proportional)
Power Ratio:	1 to 1 (Power Out = Power In) Ideal Power Out = $e \ge e$ Power In where $e = e \ge e$ is the Efficiency Factor ($e < 1$)
Impedance Ratio: $Z_1 / Z_2 = (n_1 / n_2)^2$	
For additional information, refer to	
Practical Electronics for Inventors, 2ed pp 386 - 392	
Practical Electronics for Inventors, 3ed pp 374 - 402	

Transformer Problems and Questions

- 1. Given an ideal transformer with primary turns = 9600 and secondary turns = 480, assume 100% efficiency. For input voltage = 120 VAC and output impedance = 16 ohms;
 - a. Calculate output voltage
 - b. Calculate output current
 - c. Calculate output power
 - b. Calculate input current
 - c. Calculate input power
 - b. Calculate input impedance

Diode Characteristics

Source: James Brophy, Basic Electronics for Scientists, 5th Edition

Figure 6.18 Characteristics of a diode.

Figure 3-2 Current-voltage characteristics of germanium and silicon junction diodes.

Diode Rectifiers, Clippers, and Clamps

Source: James Brophy, Basic Electronics for Scientists, 5th Edition

Figure 3-8 (a) Full-wave rectifier and (b) waveforms.

Figure 3-10 Voltage-doubler rectifier yields dc output voltage equal to twice peak input voltage.

Figure 3-23 Maximum amplitudes in output waveform of diode clipper are limited to values of bias voltage.

Figure 3-24 Diode clamp.

Figure 3-22 Diode clipper.

Figure 3-25 Negative peak of output waveform is clamped at zero when V = 0 in diode clamp circuit of Fig. 3-24.

Diode Circuits

Example

$$I_{\rm D} = 14.6 / (2000 + 1000)$$

 $I_{D} = 4.9 \text{ mA}$

 $V_0 = 0.7 + I_D R_2$

 $V_0 = 0.7 + 0.0049 \text{ x} 1000 = 0.7 + 4.9 = 5.6 \text{ V}$

Exercise

Calculate V_0 for V = 15 V, R1 = 2200 Ω , R2 = 3300 Ω

Answer: $I_D = 2.5 \text{ mA}$ $V_0 = 8.9 \text{ V}$

Calculate V_0

 $I_D = 3.38 \text{ mA}$

 $V_0 = 0.7 + I_D R_2 - 5.0$

 $V_0 = 0.7 + 0.00338 \text{ x } 3300 \text{ - } 5.0 = 0.7 + 11.2 \text{ - } 5.0 = 6.9 \text{ V}$

Exercise

Calculate V_0 for V1 = +10 V V2 = -5 V R1 = 1100 Ω R2 = 2200 Ω

Answer: $I_D = 4.1 \text{ mA}$ $V_0 = 4.8 \text{ V}$

 R_1

o Vo

 R_2

Example (Refer to the Diode Circuit Lecture Notes)

Calculate the Current I_D

1. Remove Diode (Replace by V_{TH})

For Voltage Divider $V_{TH} = V [R_2 / (R_1 + R_2)]$

$$V_{TH} = 16 [4700 / (5100 + 4700)] = 7.67 V$$

2. Short V_{source} (R₁ in parallel with R₂)

 $R_{EQ} = (R_1 \times R_2) / (R_1 + R_2)$

 $R_{EQ} = \ (5100 \ x \ 4700) \ / \ (5100 + 4700) = 2446 \ \Omega$

3. Redraw with V_{TH} , R_{EQ} , Diode

$$V_{TH} = I_D R_{EQ} + V_D$$
 $I_D = (V_{TH} - V_D) / R_{EQ}$
 $I_D = (7.67 - 0.7) / 2446 = 2.85 \text{ mA}$

Alternative Solution Method

$$V_{R2} = V_D = 0.7 V$$

$$I_{R2} = V_{R2} / R_2 = 0.7 / 4700 = 0.15 mA$$

$$I_{R1} = (V - V_{R2}) / R_1 = (16.0 - 0.7) / 5100 = 3.0 mA$$

$$I_{Total} = I_{R1}$$

$$I_D = I_{Total} - I_{R2} = 3.00 - 0.15 = 2.85 mA$$

Exercise

