Problem

Determine the voltage across resistor R in the circuit of Figure 3.30.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of Figure 3.30 are $I_{B}=12 \mathrm{~A} ; V_{G}=12 \mathrm{~V} ; R_{B}=1 \Omega ; R_{G}=0.3 \Omega ; R=0.23 \Omega$.

Find: The voltage across R.

(a)

Figure $\mathbf{3 . 3 0}$ (a) Circuit used to demonstrate the principle of superposition

(b)

Figure $\mathbf{3 . 3 0}$ (b) Circuit obtained by suppressing the voltage source

(c)

Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and apply KCL:

$$
\begin{aligned}
& -I_{B}+\frac{V_{R-I}}{R_{B}}+\frac{V_{R-I}}{R_{G}}+\frac{V_{R-I}}{R}=0 \\
& V_{R-I}=\frac{I_{B}}{1 / R_{B}+1 / R_{G}+1 / R}=\frac{12}{1 / 1+1 / 0.3+1 / 0.23}=1.38 \mathrm{~V}
\end{aligned}
$$

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as shown in Figure 3.30(c), and apply KCL:

$$
\begin{aligned}
& \frac{V_{R-v}}{R_{B}}+\frac{V_{R-v}-V_{G}}{R_{G}}+\frac{V_{R-v}}{R}=0 \\
& V_{R-v}=\frac{V_{G} / R_{G}}{1 / R_{B}+1 / R_{G}+1 / R}=\frac{12 / 0.3}{1 / 1+1 / 0.3+1 / 0.23}=4.61 \mathrm{~V}
\end{aligned}
$$

Finally, we compute the voltage across R as the sum of its two components:

$$
V_{R}=V_{R-t}+V_{R-v}=5.99 \mathrm{~V}
$$

Figure $\mathbf{3 . 3 0}$ (c) Circuit obtained by suppressing the current source

Ideal Transformer Relations (Equations)

Definitions:
Primary Winding (input - subscript ${ }_{1}$)
Secondary Winding (output - subscript ${ }_{2}$)
Turns Ratio $=\mathrm{n}_{1} / \mathrm{n}_{2}$ (number of turns on primary winding / number of turns on secondary winding)
Voltage Ratio: $\mathrm{V}_{1} / \mathrm{V}_{2}=\mathrm{n} 1 / \mathrm{n}_{2}$ (Directly Proportional)
Current Ratio: $\mathrm{I}_{1} / \mathrm{I}_{2}=\mathrm{n}_{2} / \mathrm{n}_{1}$ (Inversely Proportional)
Power Ratio: 1 to 1 (Power Out = Power In) Ideal Power Out $=e \times$ Power In where e is the Efficiency Factor $(e<1)$

Impedance Ratio: $\mathrm{Z}_{1} / \mathrm{Z}_{2}=\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)^{2}$
For additional information, refer to
Practical Electronics for Inventors, 2ed pp 386-392
Practical Electronics for Inventors, 3ed pp 374-402

Transformer Problems and Questions

1. Given an ideal transformer with primary turns $=9600$ and secondary turns $=480$, assume 100% efficiency. For input voltage $=120 \mathrm{VAC}$ and output impedance $=16 \mathrm{ohms}$;
a. Calculate output voltage
b. Calculate output current
c. Calculate output power
b. Calculate input current
c. Calculate input power
b. Calculate input impedance

Diode Characteristics

Source: James Brophy, Basic Electronics for Scientists, $5^{\text {th }}$ Edition

Figure 6.18 Characteristics of a diode.

Figure 3-2 Current-voltage characteristics of germanium and silicon junction diodes.

Figure 3-3 Effect of temperature on current-voltage characteristics of silicon junction diode.

Diode Rectifiers, Clippers, and Clamps

Source: James Brophy, Basic Electronics for Scientists, $5{ }^{\text {th }}$ Edition

Figure 3-8 (a) Full-wave rectifier and (b) waveforms.

Figure 3-10 Voltage-doubler rectifier yields dc output voltage equal to twice peak input voltage.

Figure 3-22 Diode clipper.

Figure 3-23 Maximum amplitudes in output waveform of diode clipper are limited to values of bias voltage.

Figure 3-24 Diode clamp.

Figure 3-25 Negative peak of output waveform is clamped at zero when $V=0$ in diode clamp circuit of Fig. 3-24.

Diode Circuits

Example

Calculate V_{0}
$\mathrm{V}=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{1}+0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}$
$\mathrm{V}-0.7-0.7=\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{I}_{\mathrm{D}}=[\mathrm{V}-(0.7+0.7)] /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

$\mathrm{I}_{\mathrm{D}}=14.6 /(2000+1000)$
$\mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~mA}$
$V_{0}=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}$
$V_{0}=0.7+0.0049 \times 1000=0.7+4.9=5.6 \mathrm{~V}$

Exercise

Calculate V_{0} for $\mathrm{V}=15 \mathrm{~V}, \mathrm{R} 1=2200 \Omega, \mathrm{R} 2=3300 \Omega$
Answer: $\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA} \quad V_{0}=8.9 \mathrm{~V}$

Example

Calculate V_{0}
$+15=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{1}+0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}-5$
20-0.7-0.7 $=\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{I}_{\mathrm{D}}=18.6 /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{I}_{\mathrm{D}}=18.6 /(2200+3300)$

$\mathrm{I}_{\mathrm{D}}=3.38 \mathrm{~mA}$
$V_{0}=0.7+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{2}-5.0$
$V_{0}=0.7+0.00338 \times 3300-5.0=0.7+11.2-5.0=6.9 \mathrm{~V}$

Exercise

Calculate V_{0} for $\mathrm{V} 1=+10 \mathrm{~V} \quad \mathrm{~V} 2=-5 \mathrm{~V}$

$$
\mathrm{R} 1=1100 \Omega \quad \mathrm{R} 2=2200 \Omega
$$

Answer: $\mathrm{I}_{\mathrm{D}}=4.1 \mathrm{~mA} \quad V_{0}=4.8 \mathrm{~V}$

Example (Refer to the Diode Circuit Lecture Notes)
Calculate the Current I_{D}

1. Remove Diode (Replace by V_{TH})

For Voltage Divider $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right]$

$$
\mathrm{V}_{\mathrm{TH}}=16[4700 /(5100+4700)]=7.67 \mathrm{~V}
$$

2. Short $\mathrm{V}_{\text {source }}\left(\mathrm{R}_{1}\right.$ in parallel with $\left.\mathrm{R}_{2}\right)$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{EQ}}=\left(\mathrm{R}_{1} \times \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \\
& \mathrm{R}_{\mathrm{EQ}}=(5100 \times 4700) /(5100+4700)=2446 \Omega
\end{aligned}
$$

3. Redraw with $\mathrm{V}_{\mathrm{TH}}, \mathrm{R}_{\mathrm{EQ}}$, Diode

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{EQ}}+\mathrm{V}_{\mathrm{D}} \quad \mathrm{I}_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{D}}\right) / \mathrm{R}_{\mathrm{EQ}} \\
& \mathrm{I}_{\mathrm{D}}=(7.67-0.7) / 2446=2.85 \mathrm{~mA}
\end{aligned}
$$

Alternative Solution Method

$\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 2} / \mathrm{R}_{2}=0.7 / 4700=0.15 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{R} 1}=\left(\mathrm{V}-\mathrm{V}_{\mathrm{R} 2}\right) / \mathrm{R}_{1}=(16.0-0.7) / 5100=3.0 \mathrm{~mA}$
$\mathrm{I}_{\text {Total }}=\mathrm{I}_{\mathrm{R} 1}$
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\text {Total }}-\mathrm{I}_{\mathrm{R} 2}=3.00-0.15=2.85 \mathrm{~mA}$

Exercise

Calculate the Current I_{D}
Answer: $\mathrm{I}_{\mathrm{D}}=4.9 \mathrm{~mA} \quad V_{\mathrm{D}}=0.7 \mathrm{~V}$

