RESISTOR, INDUCTOR, CAPACITOR

When electrical energy is supplied to a circuit element, it will respond in one or more of the following three ways. If the energy is consumed, then the circuit element is a pure resistor. If the energy is stored in a magnetic field, the element is a pure inductor. And if the energy is stored in an electric field, the element is a pure capacitor. A practical circuit device exhibits more than one of the above and perhaps all three at the same time, but one may be predominant. A coil may be designed to have a high inductance, but the wire with which it is wound has some resistance; hence the coil has both properties.

RESISTANCE R

The potential difference $v(t)$ across the terminals of a pure resistor is directly proportional to the current $i(t)$ in it. The constant of proportionality R is called the resistance of the resistor and is expressed in volts/ampere or ohms.

$$
v(t)=R i(t) \quad \text { and } \quad i(t)=\frac{v(t)}{R}
$$

No restriction is placed on $v(t)$ and $i(t)$; they may be constant with respect to time, as in D.C. circuits, or they may be

Fig. 1-3 sine or cosine functions, etc.

Lower case letters (v, i, p) indicate general functions of time. Capital letters (V, I, P) denote constant quantities, and peak or maximum values carry a subscript (V_{m}, I_{m}, P_{m}).

INDUCTANCE L

When the current in a circuit is changing, the magnetic flux linking the same circuit changes. This change in flux causes an emf v to be induced in the circuit. The induced emf v is proportional to the time rate of change of current if the permeability is constant. The constant of proportionality is called the selfinductance or inductance of the circuit.

$$
v(t)=L \frac{d i}{d t} \quad \text { and } \quad i(t)=\frac{1}{L} \int v d t
$$

Fig. 1-4

When v is in volts and $d i / d t$ in amperes $/ \mathrm{sec}, L$ is in volt-sec/ampere or henries. The self-inductance of a circuit is 1 henry (1 h) if an emf of 1 volt is induced in it when the current changes at the rate of 1 ampere/sec.

CAPACITANCE C

The potential difference v between the terminals of a capacitor is proportional to the charge q on it. The constant of proportionality C is called the capacitance of the capacitor.

$$
q(t)=C v(t), \quad i=\frac{d q}{d t}=C \frac{d v}{d t}, \quad v(t)=\frac{1}{C} \int i d t
$$

When q is in coulombs and v in volts, C is in coulombs/volt

Fig. 1-5 or farads. A capacitor has capacitance 1 farad (1 f) if it requires 1 coulomb of charge per volt of potential difference between its conductors. Convenient submultiples of the farad are

$$
1 \mu \mathrm{f}=1 \text { microfarad }=10^{-6} \mathrm{f} \text { and } 1 \mu \mu \mathrm{f}=1 \text { micromicrofarad }=10^{-12} \mathrm{f}
$$

Biomedical Electronics Circuits Review

KIRCHHOFF'S LAWS

1. The sum of the currents entering a junction is equal to the sum of the currents leaving the junction. If the currents toward a junction are considered positive and those away from the same junction negative, then this law states that the algebraic sum of all the currents meeting at a common junction is zero.

$\mathbf{\Sigma}$ currents entering $=\mathbf{\Sigma}$ currents leaving

$$
i_{1}+i_{3}=i_{2}+i_{4}+i_{5}
$$

or $\quad i_{1}+i_{3}-i_{2}-i_{4}-i_{5}=0$

Fig. 1-6

$\mathbf{\Sigma}$ potential rises $=\mathbf{\Sigma}$ potential drops
$v_{A}-v_{B}=R i+L(d i / d t)$
or $\quad v_{A}-v_{B}-R i-L(d i / d t)=0$
Fig. 1-7
2. The sum of the rises of potential around any closed circuit equals the sum of the drops of potential in that circuit. In other words, the algebraic sum of the potential differences around a closed circuit is zero. With more than one source when the directions do not agree, the voltage of the source is taken as positive if it is in the direction of the assumed current.

Circuit Response of Single Elements

Element	Voltage across element	Current in element
Resistance R	$v(t)=R i(t)$	$i(t)=\frac{v(t)}{R}$
Inductance L	$v(t)=L \frac{d i}{d t}$	$i(t)=\frac{1}{L} \int v d t$
Capacitance C	$v(t)=\frac{1}{C} \int i d t$	$i(t)=C \frac{d v}{d t}$

Units in the MKS System

Quantity		Unit		Quantity		Unit	
Length	l	meter	m	Charge	Q, q	coulomb	c
Mass	m	kilogram	kg	Potential	V, v	volt	v
Time	t	second	sec	Current	I, i	ampere	amp
Force	F, f	newton	$n t$	Resistance	R	ohm	Ω
Energy	W, w	joule	j	Inductance	L	henry	h
Power	P, p	watt	w	Capacitance	C	farad	f

" 1	Electrical Theory - continued		
Quantity	Symbol	Unit	Equation
Resistor	R	ohm	$\mathrm{V}=\mathrm{IR}$
Inductor	L	henry	$\begin{aligned} & V=L \mathrm{dI} / \mathrm{dt} \\ & \mathrm{I}=1 / \mathrm{L} \int \mathrm{Vdt} \end{aligned}$
Capacitor	c		$\begin{aligned} & V=1 / C \int I d t \\ & I=C d V / d t \end{aligned}$

Electron Flow - From excess to deficient
Conventional Current Flow
Internal to Source (Battery)
Negative to Positive
External from Source (Battery)
Positive to Negative
Voltage Drop - Across a Resistor + to -
Negative Current - Assumed Direction Reversed

Thevenin
Two Terminal Resistor and Battery Circuit
Series Voltage Source and Equivalent Resistor
Voitage Source $=$ Open Circuit Voltage
Equivalent Resistor $=\mathrm{V} /$ Short Circuit Current
Norton
Two Terminal Resistor and Battery Circuit
Parallel Voltage Source and Equivalent Resistor
Current Source $=$ Short Circuit Current
Equivalent Resistor $=\mathrm{V} /$ Short Circuit Current

" ${ }^{\text {a }}$	AC Sinusoidal Analysis		
Resistor	R *	$\mathrm{I}=\mathrm{V} / \mathrm{R}$	$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}$
Inductor	$X_{1}=j \omega L$	$\mathrm{I}=-\mathrm{j} \mathrm{V}_{\mathrm{L}} / \omega \mathrm{L}$	$Q_{L}=I^{2} X_{L}=V_{L}{ }^{2} / X_{L}$
Capacitor	$x_{c}=-j / \omega c$	$\mathrm{I}=\mathrm{j} \mathrm{V}_{\mathrm{c}}(\mathrm{L} \mathrm{C}$	$Q_{c}=1^{2} X_{C}=V_{c}{ }^{2} / X_{c}$
	Current Voltage	$\begin{aligned} & =I_{R}+j I_{x} \\ & =V_{R}+j V_{x} \end{aligned}$	
Complex	Power	$=\mathrm{VI}^{*}=\left(\mathrm{V}_{\mathrm{R}}\right.$	$+j V_{x}\left(\right.$ ($\left.I_{R}-j I_{x}\right)$
Complex	Power	$=P+j Q$	${ }^{\text {a }}$

1 Bel $=\log ($ Power2 $/$ Power1 $)$
1 decibel $=1 \mathrm{~dB}=0.1$ Bel, hence $10 \mathrm{~dB}=1 \mathrm{Bel}$
To express a Power Ratio in dB's, use $\mathrm{dB}=10 \log$ (Power2 / Power1)
Let Power2 =2 Power1
Power Ratio in dB's = $10 \log (2$ Power1 $/$ Power1 $)=10 \log (2)=+3.01$
Let Power2 $=0.5$ Power1
Power Ratio in dB's $=10 \log (0.5$ Power1 $/$ Power 1$)=10 \log (0.5)=-3.01$
-3 dB is often expressed as " 3 dB Down" which is the half power point (Power2 $=1 / 2$ Power1)
Let Power2 $=$ Power1
Power Ratio in dB's = $10 \log ($ Power1 $/$ Power1 $)=10 \log (1) 0$
$\mathrm{dB}=0$ does not imply zero power but rather a power ratio of one-to-one
$\mathrm{dB}=0$ can be used as a zero reference; that is to say, set your reference level to a particular value and then use the dB scale to refer all other values to that reference level.

Examples: Reference Level = 400 watts.
200 watts $=-3 \mathrm{~dB}$
800 watts $=+3 \mathrm{~dB}$
400 watts $=0 \mathrm{~dB}$
4000 watts $=+10 \mathrm{~dB}$
40 watts $=-10 \mathrm{~dB}$
650 watts $=+2.1 \mathrm{~dB}$
65 watts $=-7.9 \mathrm{~dB}$
100 watts $=-6 \mathrm{~dB}$
$2,500,000$ watts $=+38 \mathrm{~dB}$
Note: A reference of 1 milliwatts is used for dBm's
1 milliwatts $=10 \log (1 / 1)=0 \mathrm{dBm}$
5 milliwatts $=10 \log (5 / 1)=+7 \mathrm{dBm}$
500 milliwatts $=+27 \mathrm{dBm}$
0.001 milliwatts $=-30 \mathrm{dBm}$

For Voltage, Power $=I E=(E / R) E=E^{2} / R$
To express a Voltage Ratio in dB's, use $\mathrm{dB}=10 \log \left(\right.$ Power $_{2} /$ Power $\left.\left._{1}\right)=10 \log \left[\left(\mathrm{E}_{2}^{2} / \mathrm{R}\right) / \mathrm{E}_{1}{ }^{2} / \mathrm{R}\right)\right]$ $\left.10 \log \left[\left(\mathrm{E}_{2}^{2} / \mathrm{R}\right) / \mathrm{E}_{1}{ }^{2} / \mathrm{R}\right)\right]=10 \log \left(\mathrm{E}_{2}{ }^{2} / \mathrm{E}_{1}{ }^{2}\right)=20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)$

For Power Ratio $\mathrm{dB}=+3, \quad 20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)=+3$
For Power Ratio $\mathrm{dB}=-3, \quad 20 \log \left(\mathrm{E}_{2} / \mathrm{E}_{1}\right)=-3$
For Power Ratio $d b=0, \quad 20 \log \left(E_{2} / E_{1}\right)=-0.15$ and $E_{2} / E_{1}=0.707=\operatorname{SQRT}(2) / 2$

Equations and Relationships

Inductive Reactance

$$
X_{L}=2 \pi f L
$$

Capacitive Reactance

$$
X_{C}=\frac{1}{2 \pi f C}
$$

RC Circuit

RL Circuit

RCL Circuit

Cut-off Frequency $\quad f_{0}=\frac{1}{2 \pi R C} \quad f_{0}=\frac{1}{2 \pi L / R} \quad f_{0}=\frac{1}{2 \pi \sqrt{L C}}$

Time Constant $\quad t=R C$
$t=L / R$
$t=\frac{R \sqrt{C / L}}{2}$

RCL Series Impedance

$$
Z=R+j \omega L-j(1 / \omega C) \quad|Z|=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

RCL Parallel Impedance

$$
\mathrm{Z}=\mathrm{R}+\mathrm{j}\left(\varpi \mathrm{~L} /\left(1-\varpi^{2} \mathrm{LC}\right)\right)
$$

$$
|Z|=\sqrt{R^{2}+\left(\frac{X_{L} X_{C}}{X_{L}-X_{C}}\right)^{2}}
$$

Common Configuration

Notes:

When $\omega=0, \mathrm{X}_{\mathrm{C}} \rightarrow \infty$, i.e., C appears as an open circuit, so that $V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}}$

When $\omega \gg 0, X_{\mathrm{C}}=0$, i.e., \mathbf{C} appears as a short circuit, so that $V_{\text {out }}=0$

Low-pass filters

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

