Properties of a Boolean Algebra

. Operations are commutative.
AeB = BeA
A+B =B+A

. Operations are associative.
(AeB)eC = Ae(Be()
(A+B)+C = A+ (B+C)

. Each operation is distributive over the other.
Ae(B+C)=(AeB)+(Ae()
A+(Be(C) = (A+B)e(A+(C)

. There exists an identity element for each operation.
+1Identity = 0 A+0 = A
eldentity =1 Ael =A

. There exists a complement for each element.
Complement of A = A
Complementof 1 = 0
Complement of (0 = 1

. There exists an inverse for each operation.
AeA =10
A+A =1

. Each element is idempotent.
AesA = A
A+A = A

. The absorption property holds for each element,
Ae(A+B) = A
A+(AeB) = A

Boolean Algebra

Boolean Algebra

B AORB
0 0
1 1
0 1
1 1

- o P
Ll = S v

wI

A OR B = A AND

A B AAND B A B A NAND B
A AND B A * B D 00 0 0 0 1
0 1 0 0 1 1
A OR B A+B D 10 0 10 1
_ 11 1 11 0
NOT A A [> D D
Is and 0s True and False Hi and Lo
el Boolean Algebra g DeMorgan’s Theorem

Logic Circuits

Combinational or Memoryless Logic Circuits
Function of Current Input Only

Sequential or Memory Logic Circuits
Function of Current Input plus Past Inputs

State Table (Outputs & Next State)
Next State = Present State + Current Input

Moore & Mealy Machines

Moore Machine
Outputs Function of State Only

Meaty Machine
Qutputs Function of State and Input

g Sequential Machines

Synchronous Sequential Machines
Defined only at discrete times
Controlled by external clock
Uses Flip-Flops to hold
state variables between clock pulses

Asynchronous Sequential Machines
Defined for ail times
No need for explicit memory
Simpler - Two Implementation Restrictions

e Asynchronous Machines
No more than one mput variable may change
at any on time. State variable must be assigned in
such a way that no more than one state variable
changes for any possible state changes.

“Simultanecus” Signal Changes
Finite Propagation Times
If 00 > 11 may happen in several ways
00>01>11 or
00> 10 > 11
Depends on “who wins the race”

May have “Don't Care” States

Mealy & M oore Machines

Moore Machine is a finite-state machine whose output values are determined solely by its
current state and can be defined as six elements (S, S, £, A, T, G), consisting of the following:

a finite set of states (S)

a start state (also called initial state) S, which is an element of (S)

a finite set called the input alphabet (X))

a finite set called the output alphabet (A)

a transition function (T : S X £ — S) mapping a state and the input alphabet to the next state
an output function (G : S — A) mapping each state to the output alphabet.

Mealy Machine output values are determined both by its current state and by the values of its
inputs and can be defined as six elements (S, Sy, X, A, T, G), consisting of the following:

a finite set of states (S)

a start state (also called initial state) S, which is an element of (S)

a finite set called the input alphabet (X)

a finite set called the output alphabet (A)

a transition function (T : S X £ — S) mapping a state and the input alphabet to the next state

an output function (G : S x £ — A) mapping pairs of a state and an input symbol to the
corresponding output symbol.

http://en.wikipedia.org/wiki/Theory of Computation

A o—
D e
C o—

Dl
Ao—.@—
D, R
Bc»——@ - o A*B-C
D3
Co—@—

A+B+C

9T

{a)

Figure 9-3 (a) Diode OR gate and (b) circuit symbol.

TRANSISTOR SWITCH

.
Brin=100 g,
5V §

0 . Vin

Figure 3-32: The BJT Inverter

Veco+5 v

Vecot5V Vee
A

Ry

Figure 3-32(a): Transistor OFF

s
Jo k&
i ‘ff//,c//(/)

Figure 3-32(b): Transistor ON

b

@" A+B+C

(%)

O lplts Lews (o)

Digital Electronics

12,2 Logic Gates

Logic gates are the building blocks of digital electronics. The fundamental logic gates
include the INVERT (NOT), AND, NAND, OR, NOR, exclusive OR {XOR), and
exclusive NOR (XNOR) gates. Each of these gates performs a different logical opera-
tion. Figure 12.10 provides a description of what each logic gate does and gives a

FIGURE 12.10 switch and transistor analogy for each gate.
INVERT (NOT) Truth table Switch Transistor Description
analogy analogy YV
in | out 10K A NOT gate or inverter
in l> o out o |1 - out outputs a logic level that's
1 1o in the opposite (complement)
6= LOW vollage level O =10 of the input logic level,
1 = HIGH voltage level =
AND A B 45V
8
A B foul y / famp A -
bote + The ouput of an AND gate
‘; :D— out ? {[J 3 B YK is HIGH only when both
1] s out inputs are HIGH.
Off =0 10K
NAND
A B|on lamp Combines the NOT
ool 4 o A (out) function with an AND
‘; :D— out oI = ﬁ) gate; output only goes
: ? ([) I B On=1 LOW when both inputs are
Off =0 HIGH.
OR +5Y
AR jout A9 lamp - The output of an OR gate
A bojo . o (o) A will go HIGH if one or bath
a :D— o ([) [I) : = - inputs goes HIGH. The
R On=1 B output only goes LOW
Off =0 s ™ when hoth inputs are LOW.
NOR
4 Combines the NOT
i o ﬁ Oll function with an OR gale;
B :DO— out 610 output goes LOW if one or
1ofo0 both inputs are LOW, cuput
1o goes HIGH when both
inputs are LOW,
Exclusive OR (XOR)
A The output of an " Combines the
B jD_ out XOR gate goes B :)DO— out NOT fusnction with
A5 HIGH if the inputs AB|ow a0 XOR gate;
A o1l are different from A ¢ 1lo output goes HIGH
ont 1071 each other. XOR 3 :)D—'DO— b 100 if the inputs are
Lipo gates only come . L 1Tl the same.
B equivalent circuit

] . with two inputs.
equivaleat circuit

Universal Capability of NAND and NOR Gates

NAND and NOR gates are referred to as universal gates because each alone can be

combined together with itself to form all other possible logic gates. The ability to cre-

ate any logic gate from NAND or NOR gates is obviously a handy feature. For exam-

ple, if you do not have an XOR IC handy, you can use a single multigate NAND gate

(e.g., 74HCO0) instead. The figure below shows how to wire NAND or NOR gates
FIGURE 12.24 together to create equivalent circuits of the various logic gates.

.— - S e S

Logic gate NAND equivalent circuit

NOR equivalent circuit

¥

AND

:

NAND ' A

.
:

i
OR . _
A+B
AB=AtB A e
:D— ‘ B :DO—ED>~ (A+BI AT BI=A+E
H —
B

NCR A

.

Y

XOR : 4

7

XNOR 4 — B —
"

K

Bubble Pushing

A shortcut method for forming equivalent logic circuits, based on De Morgan’s theo-
rem, is to use what's called bubble pushing.

AND-OR-INVERT Gates (AOls)

When a Boolean expression is reduced, the equation that is left over typically will be
of one of the following two forms: produci-of-sums (POS) or sum-of-products (SOP). A
POS expression appears as two or more ORed variables ANDed together with two or
more additional ORed variables. An SOP expression appears as two or more ANDed
variables ORed together with additional ANDed variables. The figure below shows
two circuits that provide the same logic function (they are equivalent), but the circuit
to the left is designed to yield a POS expression, while the circuit to the right is
designed to yield a SOP expression.

Table made using SOP expression
(it's easier than POS)

A B C DiACAD BC BDl x

Logic circuit for POS expression Logic circuit for SOP expression 000 e6le 0o 1 a9l
0 0 0 1 0 0 1 i 1

A 0 ¢ 1 0lo0o o o ofe

A & 0 1t 0 0 8 1 1
B 4 0t oolo 8 0 ofp
B 01 o6 tle o o oo

X X 01 1010 0 0 oo

c B C1dtte o ¢ ofo
b ¢ oo ot o 1 o0];q
B 100t 1 1 1 i1

D 101 06l0o 0o o ofo

E g1 0 i 0 1 1

. _ N 11 0 0 I 0 ¢ o 1
X=(A+B)C+D) X=AC+AD + BC +BD 110101 1 ¢ ol
e 1 ¢feo o o ofo

FIGURE 12.25 Pt ifoe 1 o of

Bubble pushing involves the flowing tricks: First, change an AND gate to an OR
gate or change an OR gate to an AND gate. Second, add inversion bubbles io the
inputs and outputs where there were none, while removing the original bubbles.
That’s it. You can prove to yourself that this works by examining the corresponding
truth tables for the original gate and the bubble-pushed gate, or you can work out the
Boolean expressions using De Morgan's theorem, Figure 12.23 shows examples of
bubble pushing.

PRACTICAL ELECTRONICS FOR INVENTORS

LOGIC IDENTITIES

1J)A+B=B+A

2)AB=BA
BNA+B+O=A+B+C

4} A(BC) = (AB)C

5YAB+C)=AB + AC
6)£A+B)(C+D)=AC+AD+BC+BD

equivalent circuits

equivalent eircuits ,

-
!L
o
3
i

7)1=0
8)8=1
NA-0=0

10),3 “1=A equivalent circui:s' . & A—éfzﬂg

1MA+0=A 1
12)A+1=1 B
13)A+A=A
14) Ad=A
1B)A=A

wo

16)A+A=1 e i
17) AA =0 A 4o
) \ A8+ Cy=Al + AT
17]
- 5 B AC:AD-BCED | 4 \
2NA+AB=A+B ¢ BC . AR+ AC

Ci
21)A+AB=A+B J—ﬂ >___
22)A®B=AB+ AB = (A + B)(AD) A e

18) A+B=AF
199AB=A+B

{A+BYCHD} equivalent circuits]

A
8
{A+BNC+D)Y A6+0
= B
ACHAD+ECLED [/

»

23) A®B=AB+AB

FIGURE 12,19

FIGURE 12.21

equivalent circuits ‘

‘; :}D— A®BR=AB +AB

A i AR A®B=
AA+AB+BA+BR
(AA =BB=0)
=A@A+B)+BA+B)
=A{AB) + B(AB)

B A ={A+ BYAB)

4 AB ADB=
ABA +B)
={(A+B)A+B)
=AA +AB+BA + BB
P — =AB+ AR
A+ B

b m T D
A | B |7 A | B ! A+E

0 0 1 0 0 1

0 1 1) 1 1

1 0 1 1 0 t

1 1 0 1 i 0

FIGURE 12.22

equivalent circuits
a4 jDo—— A AR +AF

A AB
B
AB+AE
AB
A®B=AR +AR
g AB+AR

A | B | AiB A_| B | AE
0 0 1 0 0 1
i} 1 1} U b 0
1 0 0 1 o |0
1 1 0 1 1 [t}

Digital Logic Signal Levels and State Variables

Simple Positive Logic

Define "Lo" = State "0" = 0; i.e., "near 0 volts, or maybe +0.7V, or less than +2.1V, etc.”
Define "Hi" = State "1" = 1;i.e., "near Vcc,

say +5V, or greater than +3.9V, et¢. for TTL;

or +15V, or greater than +13.1V, etc. for CMOS."

Remember these are arbitrary definitions.

Notice however, that State "1" is more positive than State "0". With this in mind, we can even define
"Hi" = State "1" =1 = 0 volts, and
"L.o" = State "0" = 0 =-5 volts.

We still have State "1 more positive than State "0".

And Boolean Algebra doesn't care!

Simple Negative Logic

Try reversing things, such that State "1" is more negative than State "0"; i.¢.,
State "1" = 0 volts, and
State "0" = +5 volts, or even

State "1" = -5 volts, and
State "0" = 0 volts.
In both cases, State "1" is more negative than State "0".

Positive Logic Truth Tables Negative Logic Truth Tables
A B AND OR A B OR AND
0 0 0 0 1 1 1 1
0 1 6 I 1 0 1 0
1 0 0 1 0 1 I 0
1 I 1 | 0 0 0 0
Note: Positive AND Logic = Negative OR Logic
Positive OR Logic = Negative AND Logic
DeMorgan's Law
AeB=A+B A+B=AeB
AeB=A+B=AeB=AeB A+B=AeB=A+B=A B

Positive Logic A e B = Negative Logic A + B

Positive Logic A + B = Negative Logic A « B

Making Sense of SR Flip Flop Seemingly Contradictory Explanations

SR Flip Flop
Unfortunately, there is no consistency in describing the operation of SR Flip Flops (Set Reset);
in fact, many of us even refer to them as RS Flip Flops.
However, one property description is pretty much universal:

Set S implies Q=1

Reset Rimplies Q =0
Adding even more to the confusion, is an error in our BME 460 Paul Scherz textbook,
Practical Electronics for Inventors, 2ed, page 682, Figure 12-70, Cross NAND SR Flip Flop;
the outputs Q and Q are reversed. Q should be associated with the S input NAND gate
and Q should be associated with the R input NAND gate.

Be careful, don't confuse yourself when using other resources; some authors associate Qand Q
with § & R respectively, other authors reverse the association. And then there is the confusion
with respect to NOR SR Flip Flops, NAND SR Flip Flops, and inverted inputs to both NOR and
NAND Flip Flops. For our BME 460 purposes, the following concepts apply:

Set S implies Q=1
Reset Rimplies Q =0
Not Allowed NOR Gates §S=1and R=1

NAND Gates S=0 and R=0
If provisions for a clock pulse are not available, the circuit is known as an asynchronous flip flop.

Triggered or T Flip Flops

If the S and R inputs are gated with a clock pulse, the circuit is known as a synchronous flip flop.
If gated by a NAND, the S and R inputs are only enabled when the clock pulse is high.

When the clock is low, the inputs are disabled and the flip flop is placed in the Hold mode.

Latched Data or D Flip Flops (Single Input Device)
Invert the S input and apply to the R input:
ifS=0thenR=1
ifS=0thenR =0
but never S =R

Rename S as D
D SR Q
C 01 0 {(Reset)
1 10 1 (set)

Each change in the input data toggles a change in the output.

J K Master-Slave Flip Flop

Inputs: J, K, Set, Clear, Clock

Outputs: Q Q

Trailing Edge Triggered Flip Flop

Master triggers on the clock up-tick (slave inactive)
Slave follows master on the clock down-tick

Control Q
Set 1
Clear 0

Input
J K o
00 Q Hold
01 0 Reset
10 1 Set
11 Q Toggle

555 Astable Multivibrator Characteristics

—I—HQZ]a

¢ T %&m M3

The following computational formulas apply to the 555 configuration shown above.
On-Time = t, = 0.69 (R, +R,) C
Off-Time = t; = 0.69 (R,) C
Period = t;+t;, = 0.69 (R, +2R,) C
Frequency = 1/Period = 1.44/(R, +2R,) C

Duty Cycle = t;, /() +t;) = (R; +R,))/ (R, +2R,)

RSFlip Flop Truth Tables

In order to eliminate ambiguity and to achieve some sense of continuity, we will follow the convention:

Set impliesQ =1.
Reset impliesQ = 0.

Set Reset

NOR Gates

S R Q

0 O QHad
0 1 OReset
1 0 1S«

1 1 X

X = Not Allowed

S=1 => Set (Q=1)
R=1 => Reset (Q=0)

R%:Q S%:Q iE |
Sﬁ' 6 R = B o—I :

Set Reset

NAND Gates

S R Q

0 0 X

0 1 1Set

1 0 OReset

1 1 QHoald

X = Not Allowed

S=0 => Set (Q=1)
R=0 => Reset (Q=0)

Q
Set Reset
NAND Gateswith Inverted S & R inputs
S RS R Q
0O 0 1 1 QHoad
0 1 1 0 OReset
1 0 0 1 1Se
1 1 0 0 X
X = Not Allowed

S=1 => 5=0 => Set (Q=1)
R=1 => R=0 => Resat (Q=0)

Asyou can see, there is consistency for Set means Q=1 and Reset means Q=0; but there can be confusion trying
to decide whether-or-not S & R are 0 or 1 depending on the type of gates (NOR or NAND).

If inverted S & R inputs are used with the NAND gates, then S=1 is the Set input and R=1 is the Reset input;
which isthe same as the NOR gates implementation.

Rectangular Wave & Square Wave Generators (Op-Amp Schmitt Triggers & 555 Timers)

(a) Circuit diagram

3

3

C

Vin

VW sar

+ Vth

Vi

- Vsal

(b) Output waveform

Figure 16-15: Square-wave generator

o +Vce

.’,555} :

3 —ov,

5 1

jf_ v

1

(a) Circuit diagram

Vo A

+Vee

<—Z‘H—>

<, >

(b) Output waveform

Figure 16-17: The 555 timer connected as a rectangular waveform generator

Electronic Devices: a design approach, Ali Aminian & Marian Kazimierczuk, 2004

SQUARE-WAVE GENERATOR

Recall that the output of the Schmitt trigger, which was introduced in Chapter 11 as a bi-
reference level comparator, is a square wave with £0op) = £V sa of the op-amp. With the
addition of a capacitor C and a feedback resistor R, as shown in Figure 16-15(a), the need
for an input signal is eliminated and the output frequency can also be controlled by
proper selection of the R and C.

v 1‘ /Uo
il AAA +Vsar
11D R
C
+Vee Ve
- +V /
4+—0 o / /
+ » t

-Vec le Vs / \
Ven

R,

~¥ sat O

(a) Circuit diagram (b) Output waveform

Figure 16-15: Square-wave generator

Referring to Equations 11-7 and 11-8, the upper and lower threshold voltages (Vyr &
V17) or (V) can be written in one equation as follows:

R ' -
i‘/:h =iVsa! R -:R (16 64)
1 2

It can be shown, with some considerable algebraic effort, that the period of the output
waveform is as follows:

T= 2RC1n(2}I:2 +1) (16-65)

1
1 1

L. (16-66)
T 2RCIn(2R, /R, +1)

o

However, if we select R, and R, such that (1 + 2Ry/Ry) =2.178 (the natural log base), then
In(1 + 2R,/R;) will equal unity.
2R,

+1=2.718 (16-67)
1
2R, = 1.718R, (16-68)
R, =0.859R,; (16-69)
Hence, the output frequency is a function of R and C only, and its equation simplifies as
follows:
1
= 16-70
2RC ()

Electronic Devices: a design approach, Ali Aminian & Marian Kazimierczuk, 2004

16.8 THE 555 TIMER

The 555 timer is a popular 8-pin integrated circuit (/C), which may be used in many
applications including rectangular waveform generation. Figure 16-17 shows the
common configuration of the 555 timer as it is connected to produce a rectangular

waveform.
° +¥ec
B é 8 4 o Vo4

2 1 Sl 0 - !
C== C 0.01 < fy et P
T | oagoaw e

(a) Circuit diagram (b) Output waveform

Figure 16-17: The 555 timer connected as a rectangular waveform generator

The time duration for which the output is high () is given by the following equation:

ty=0.69(Ry + Ry)C (16-71)
The time duration for which the output is low (z.) is given by the following equation:
11 =0.69(R,)C (16-72)
Therefore, the period and frequency of the waveform are as follows:
T =ty + t; = 0.69(R, + 2R;)C (16-73)
1 , 1
Je =T~ 56o® +2R,)C (16-74)

For a rectangular waveform, the ratio of the pulse duration (¢z) to the period T is referred
to as the duty cycle (d) of the waveform. A square wave is a rectangular waveform with
d = 0.5 or 50% duty cycle. Examining the equations for zy and #;, we notice that it would
not be possible to produce a square wave with the circuit of Figure 16-16. However,
there is a simple solution for this problem, and that is to connect a diode across the R, and
let Ry = R, =R, as illustrated in Figure 16-18(a).

Electronic Devices: a design approach, Ali Aminian & Marian Kazimierczuk, 2004

° +VCC R] zR2=R
R ty=1,d=0.5
'8 4 vou

3 |—o0, *Vec

6 5
2 l 0 p !
C

1
e C, 0.01 — | <«—f; —»
I 1 ogow ot

(a) Circuit diagram (b) Output waveform

Figure 16-18: The 555 timer connected as a square-wave generator

When the output is high, the diode is forward-biased, shorting out R,; hence,

tr=0.69(R,)C = 0.69RC (16-75)
When the output is low, the diode is unbiased, behaving like an open-circuit; hence,
11 =0.69(R;)C=0.69RC (16-76)
T=ty+1t,=069RC+ 0.69RC =1.38RC (16-77)
1 1
=—= 16-78
Lo T 138RC ()
_ln _O69RC (16-79)
T 1.38RC

In order to produce a rectangular waveform with a duty cycle less than 50% (tu < 1), we
can pick R, larger than R), as required. However, the practical solution is to split R, into
a series combination of a fixed resistor and a potentiometer, so that R, can be adjusted for
a desired duty cycle.

°+5V

Uo 4

3 l—ov, 45V

555

5 (s
1 0 2.5 10 12.5 (“)
l_ c Ilo.m uF

(b) Output waveform

(a) Circuit diagram
Figure 16-19: Rectangular waveform generator of Design Example 16-6

Electronic Devices: a design approach, Ali Aminian & Marian Kazimierczuk, 2004

NAND Gate Equivalent Circuits

Two-input (X & Y) with one-output (F) logic gate circuits can be defined by atotal of 16 functions.

X|Y|F1|F2|F3|F4A|F5|F6|F7 | F8|F9|F10|F11|F12 | F13 | F14 | F15 | F16
ojoyjo0o;j1j0j0j0}j1j17j12,07,0 0 1 1 1 0 1
0,1/ 0]0|]1]0]0O0O]J]1T]0]0]1 1 0 1 1 0 1 1
110/,0;]0]0O0O]2)0]0]1T]0O0]12 O 1 1 0 1 1 1
1/1]1{]0]0)]0]0O0O]1T)]0]0O0O]1]0 1 1 0 1 1 1 1

Six of the functions can be represented merely as hard-wired configurations (inverters as required):

F1, F16, F11, F10, F6, F7.

X Y F1 F16 F11 F10 F6 F7
0 0 0 1 0 0 1 1
0 1 0 1 0 1 1 0
1 0 0 1 1 0 0 1
1 1 0 1 1 1 0 0

0 1 X Y X Y

Eight other functions can be implemented using only one NAND gate (inverters as required):
F2, F3, F4, F5, F15, F14, F13, F12

X Y F2 F3 F4 F5 F15 F14 F13 F12

0 0 1 0 0 0 0 1 1 1

0 1 0 1 0 0 1 0 1 1

1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 1 1 1 0
XY XY XY XY NOT (XY) | NOT(XY) | NOT(XY) | NOT(XY)

The remaining two functions can be implemented using three NAND gates (inverters as required):

F8, F9.
X Y F8 F9
0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 0
XY + XY | XY + XY

Notes:. A ORB = NAND (A B)
F6=NOT F11= X
F7=NOTF10=Y
F15 = NOT F2=NAND (X Y)
F14 = NOT F3=NAND (X Y)
F13 = NOT F4=NAND (X Y)
F12 = NOT F5=NAND (X Y)
F8= XY + XY = NAND [NAND (X Y) with NAND (X Y)]
FO= XY + XY = NAND [NAND (X Y) with NAND (X Y)]

F8=NOT F9

NAND Gate Equivalent Circuits

Sketch an equivaent circuit using only NAND gates to represent each of 16 different possible

output functions from a combination of 2 inputs (X & Y).

Note:

Indicate inversion with either input bubbles or output bubbles; do not use additional inverter gates.
X|Y|F1|F2|F3|F4|F5|F6|F7|F8|F9|F10|F11|F12|F13|F14|F15|F16
ojofo0}j1]0|]0|O0O]1]1]2|]0]|0O0 0 1 1 1 0 1
0o/1]0]0|1]0]0|1]0]0]1 1 0 1 1 0 1 1
1/0/0/0]O0O]2|]0]0]1]0|1]|O0 1 1 0 1 1 1
1/1/,0/0]0]O0O|2]0]0O0]2|0]|1 1 0 1 1 1 1

Example: See Function F8 above, use positive logic when the Output Function = 1

0XANDY or
1 X AND Y

< <
I

F8= (X ANDY) OR (X ANDY)

F8=(X ANDY) OR (X ANDY)

F8 = (X ANDY) AND (X AND Y) = NAND(X withY) AND NAND (X withY)

F8 = NAND (NAND(X with Y) with NAND(X with Y)

Sketch:

Logic Table Proof:

x|y IxIT!| = Gate #1 _ Gate #2 Gate #3

X NAND Y | X NAND Y Gate#1 NAND Gate #2
0011 0 1 1
0]1]1]0 1 1 0
1/0]0]1 1 1 0
1/1/01]0 1 0 1

See page 2 for asimilar case using negative logic when the Output Function F8 = 0.

Page 1.

Negative logic when the Output Function F8 = 0

X=0,Y=1XANDY or
X=1Y=1XANDY

Note F8=0, isthe same as F8

so F8 = (XANDY) OR (XANDY)

F8=(X AND Y) OR (XANDY)

F8= (X AND Y) AND (X ANDY)

F8 = NAND(X with Y) AND NAND(X with Y)

F8 = NOT NAND [(NAND(X with Y) with NAND(X with Y)]

Sketch:

Logic Table Proof:

- = Gate #1 Gate #2 Gate #3
XIY XY ¥ NAND Y | X NAND ¥ | Gate#l NAND Gate#z | NVOT (Gate#)
01011 1 1 0 1
0ol1]1]0 0 1 1 0
1001 1 0 1 0
1]1]0]0 1 1 0 1

Page 2.

Sketch an equivaent circuit using only NAND gates to represent each of 16 different possible
output functions from a combination of 2 inputs (X & Y).

NAND Gate Equivalent Circuits

Note:

Indicate inversion with either input bubbles or output bubbles; do not use additional inverter gates.
X|Y|F1|F2|F3|F4|F5|F6|F7|F8|F9|F10|F11|F12|F13|F14 | F15|F16
ojofo0}j1]0|]0|O0O]1]1]2|]0]|0O0 0 1 1 1 0 1
0o/1]0]0|1]0]0|1]0]0]1 1 0 1 1 0 1 1
1/0/0/0]O0O]2|]0]0]1]0|1]|O0 1 1 0 1 1 1
1/1/,0/0]0]O0O|2]0]0O0]2|0]|1 1 0 1 1 1 1

Example: See Function F9 above, use positive logic when the Output Function = 1

X=0,Y=1XANDY or

X=1Y=0XANDY

F9= (X ANDY) OR (XANDY)

F9=(XANDY) OR (XANDY)

F9= (X AND Y) AND (X ANDY) = NAND(X with Y) AND NAND (X with Y)

F9 = NAND (NAND(X with Y) with NAND(X with Y)

Sketch:

Logic Table Proof:

x| Y| XIT| = Gate #1 Gate#2 _ Gate #3

X NAND Y | X NAND Y Gate#1 NAND Gate #2
0Oj(0|1]|1 1 1 0
0/1]1/0 0 1 1
11001 1 0 1
1/1/0]0 1 1 0

See page 4 for asimilar case using negative logic when the Output Function F9 = 0.

Page 3.

Negative logic when the Output Function F9 =0

X=0,Y=0XANDY or
X=1Y=1XANDY

Note F9 =0, isthe same as F9

0 F9 = (XANDY) OR (X ANDY)

F9=(XANDY) OR (X ANDY)

F9= (XANDY) AND (X ANDY)

F9 = NAND(X with Y) AND NAND(X with Y)

F9 = NOT NAND [(NAND(X withY) with NAND(X with Y)]

Sketch:

Logic Table Proof:

- = Gate #1 Gate #2 Gate #3
XIY XY % NAND T | X NAND Y | Gate#1 NAND Gate#z | NOT (Gate#3)
01011 0 1 1 0
0l1]1]0 1 1 0 1
11001 1 1 0 1
11100 1 0 1 0

Page 4.

	BoolAlg_LogicGates.pdf
	RSFlipFlop.pdf
	RectangularWaveGenerators.pdf
	SQWave1.pdf
	SQWave2.pdf
	SQWave3.pdf
	SQWave4.pdf

	NandGateEquivalents.pdf
	NAND Gate Equivalent Circuits.pdf
	Sketch NAND Gate Equivalent Circuits F8 _2012_.pdf
	Sketch NAND Gate Equivalent Circuits F9 _2012_.pdf

