






Mealy & Moore Machines 
 
Moore Machine is a finite-state machine whose output values are determined solely by its 
current state and can be defined as six elements (S, S0, Σ, Λ, T, G), consisting of the following: 
 
a finite set of states ( S ) 
a start state (also called initial state) S0 which is an element of (S) 
a finite set called the input alphabet ( Σ ) 
a finite set called the output alphabet ( Λ ) 
a transition function (T : S × Σ → S) mapping a state and the input alphabet to the next state 
an output function (G : S → Λ) mapping each state to the output alphabet. 
 
 
Mealy Machine output values are determined both by its current state and by the values of its 
inputs and can be defined as six elements (S, S0, Σ, Λ, T, G), consisting of the following: 
 
a finite set of states ( S ) 
a start state (also called initial state) S0 which is an element of (S) 
a finite set called the input alphabet ( Σ ) 
a finite set called the output alphabet ( Λ ) 
a transition function (T : S × Σ → S) mapping a state and the input alphabet to the next state 
 
an output function (G : S × Σ → Λ) mapping pairs of a state and an input symbol to the 
corresponding output symbol. 
 
 
http://en.wikipedia.org/wiki/Theory_of_Computation 



 

















RS Flip Flop Truth Tables 
 
In order to eliminate ambiguity and to achieve some sense of continuity, we will follow the convention: 
Set implies Q = 1. 
Reset implies Q = 0. 
 

                      
 
   Set Reset       Set Reset        Set Reset 
   NOR Gates       NAND Gates      NAND Gates with Inverted S & R inputs 
   S R Q       S R Q       S R S R Q 
   0 0 Q Hold     0 0 X       0 0  1 1 Q Hold 
   0 1  0 Reset     0 1   1 Set      0 1  1 0  0 Reset 
   1 0  1 Set      1 0  0 Reset      1 0  0 1  1 Set 
   1 1 X       1 1 Q Hold      1 1  0  0 X 
   X = Not Allowed      X = Not Allowed     X = Not Allowed 
   S=1  =>  Set (Q=1)    S=0  =>  Set (Q=1)    S=1  =>  S=0  =>  Set (Q=1) 
   R=1  =>  Reset (Q=0)    R=0  =>  Reset (Q=0)   R=1  =>  R=0  =>  Reset (Q=0) 
 
As you can see, there is consistency for Set means Q=1 and Reset means Q=0; but there can be confusion trying 
to decide whether-or-not S & R are 0 or 1 depending on the type of gates (NOR or NAND). 
If inverted S & R inputs are used with the NAND gates, then S=1 is the Set input and R=1 is the Reset input; 
which is the same as the NOR gates implementation. 
 
 











NAND Gate Equivalent Circuits 
 
Two-input (X & Y) with one-output (F) logic gate circuits can be defined by a total of 16 functions. 

 
 
 
 
 
 

 
Six of the functions can be represented merely as hard-wired configurations (inverters as required): 
F1, F16, F11, F10, F6, F7. 

X Y F1 F16 F11 F10 F6 F7 
0 0 0 1 0 0 1 1 
0 1 0 1 0 1 1 0 
1 0 0 1 1 0 0 1 
1 1 0 1 1 1 0 0 
  0 1 X Y X Y 

 
Eight other functions can be implemented using only one NAND gate (inverters as required): 
F2, F3, F4, F5, F15, F14, F13, F12 

X Y F2 F3 F4 F5 F15 F14 F13 F12 
0 0 1 0 0 0 0 1 1 1 
0 1 0 1 0 0 1 0 1 1 
1 0 0 0 1 0 1 1 0 1 
1 1 0 0 0 1 1 1 1 0 
  X Y X Y X Y X Y NOT (X Y) NOT (X Y) NOT (X Y) NOT (X Y) 

 
The remaining two functions can be implemented using three NAND gates (inverters as required): 
F8, F9. 

X Y F8 F9 
0 0 1 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 
  X Y  +  X Y  X Y  +  X Y 

 
Notes:  A OR B  =  NAND (A B)       
F6 = NOT F11 =  X  
F7 = NOT F10 =  Y  
F15 = NOT F2 = NAND (X Y) 
F14 = NOT F3 = NAND (X Y) 
F13 = NOT F4 = NAND (X Y) 
F12 = NOT F5 = NAND (X Y) 
F8 =  X Y  +  X Y  =  NAND [ NAND (X Y) with NAND (X Y) ] 
F9 =  X Y  +  X Y  =  NAND [ NAND (X Y) with NAND (X Y) ] 
F8 = NOT F9 

X Y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 
1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 
1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 
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NAND Gate Equivalent Circuits 
 
Sketch an equivalent circuit using only NAND gates to represent each of 16 different possible 
output functions from a combination of 2 inputs (X & Y). 
 
Note:  
Indicate inversion with either input bubbles or output bubbles; do not use additional inverter gates. 

 
Example:  See Function F8 above, use positive logic when the Output Function = 1 
 
 X = 0, Y = 0  X AND Y   or   
 X = 1, Y = 1  X AND Y 
 
 F8 = (X AND Y)  OR  (X AND Y) 
 
 
 F8 = (X AND Y)  OR  (X AND Y) 
 
   
 F8 = (X AND Y)  AND  (X AND Y)  =  NAND( X with Y )  AND  NAND (X with Y) 
 
 F8 = NAND (NAND( X with Y )  with  NAND( X with Y ) 
 
Sketch: 
 
 
 
 
 
 
 
 
 
 
 
 
Logic Table Proof: 

 
 
 
 
 
 
 

 
See page 2 for a similar case using negative logic when the Output Function F8 = 0. 

X Y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 
1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 
1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 

X Y X Y 
Gate #1 

X  NAND  Y 
Gate #2 

X  NAND  Y 
Gate #3 

Gate#1 NAND Gate #2 
0 0 1 1 0 1 1 
0 1 1 0 1 1 0 
1 0 0 1 1 1 0 
1 1 0 0 1 0 1 

#1

#2

X 
Y 

#3
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Negative logic when the Output Function F8 = 0 
 
   X = 0, Y = 1  X AND Y   or   
   X = 1, Y = 1  X AND Y 
 
Note  F8 = 0, is the same as F8 
 
   so  F8  =  (X AND Y)  OR  (X AND Y) 
 
 
 F8 = (X AND Y)  OR  (X AND Y) 
 
 
 F8 =   (X AND Y)  AND  (X AND Y) 
 
 
 F8 = NAND( X with Y) AND NAND( X with Y) 
 
 
 F8 = NOT NAND [(NAND( X with Y) with NAND( X with Y)] 
 
 
Sketch: 
 
 
 
 
 
 
 
 
 
 
 
 
Logic Table Proof: 

 
 
 
 

X Y X Y 
Gate #1 

X  NAND  Y 
Gate #2 

X  NAND  Y 
Gate #3 

Gate#1 NAND Gate #2 NOT (Gate#3) 

0 0 1 1 1 1 0 1 
0 1 1 0 0 1 1 0 
1 0 0 1 1 0 1 0 
1 1 0 0 1 1 0 1 

X 
Y 

#3

#1 

#2 
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NAND Gate Equivalent Circuits 
 
Sketch an equivalent circuit using only NAND gates to represent each of 16 different possible 
output functions from a combination of 2 inputs (X & Y). 
 
Note:  
Indicate inversion with either input bubbles or output bubbles; do not use additional inverter gates. 

 
Example:  See Function F9 above, use positive logic when the Output Function = 1 
 
 X = 0, Y = 1  X AND Y   or   
 X = 1, Y = 0  X AND Y 
 
 F9 = (X AND Y)  OR  (X AND Y) 
 
 
 F9 = (X AND Y)  OR  (X AND Y) 
 
   
 F9 = (X AND Y)  AND  (X AND Y)  =  NAND( X with Y)  AND  NAND (X with Y) 
 
 F9 = NAND (NAND( X with Y)  with  NAND( X with Y ) 
 
Sketch: 
 
 
 
 
 
 
 
 
 
 
 
 
Logic Table Proof: 

 
 
 
 
 
 
 

 
See page 4 for a similar case using negative logic when the Output Function F9 = 0.

X Y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 
1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 
1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 

X Y X Y 
Gate #1 

X  NAND  Y 
Gate #2 

X  NAND  Y 
Gate #3 

Gate#1 NAND Gate #2 
0 0 1 1 1 1 0 
0 1 1 0 0 1 1 
1 0 0 1 1 0 1 
1 1 0 0 1 1 0 

#3

#1 

#2 

X 
Y 
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Negative logic when the Output Function F9 = 0 
 
   X = 0, Y = 0  X AND Y   or   
   X = 1, Y = 1  X AND Y 
 
Note  F9 = 0, is the same as F9 
 
   so  F9  =  (X AND Y)  OR  (X AND Y) 
 
 
 F9 = (X AND Y)  OR  (X AND Y) 
 
 
 F9 =   (X AND Y)  AND  (X AND Y) 
 
 
 F9 = NAND( X with Y) AND NAND( X with Y) 
 
 
 F9 = NOT NAND [(NAND( X withY) with NAND( X with Y)] 
 
 
Sketch: 
 
 
 
 
 
 
 
 
 
 
 
 
Logic Table Proof: 

 
 
 
 

X Y X Y 
Gate #1 

X  NAND  Y 
Gate #2 

X  NAND  Y 
Gate #3 

Gate#1 NAND Gate #2 NOT (Gate#3) 

0 0 1 1 0 1 1 0 
0 1 1 0 1 1 0 1 
1 0 0 1 1 1 0 1 
1 1 0 0 1 0 1 0 

#3

#1 

#2 

X 
Y 
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