Bipolar Junction Transistors (BJT)
PNP \& NPN (Emitter Base Collector)

Note: NPN's are more commonly encountered due to greater ease of production.
Bipolar (majority and minority carriers)
Forward voltage characteristics of PN junction (approximately 0.2 volts for Ge and 0.7 volts for Si).
Biasing:

$$
\text { NPN } \quad V_{c}>V_{e} \quad V_{b e}=+0.7 \quad \text { PNP } \quad V_{e}>V_{c} \quad V_{b e}=-0.7
$$

BJTs are current-controlled devices: Symbology and Voltage / Current Relationships:
$\mathrm{V}_{\mathrm{BB}} \quad$ Base Bias Voltage $\quad \mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\mathrm{b}}$
$V_{\text {EE }} \quad$ Emitter Bias Voltage $\quad I_{c}=\alpha I_{e}$
$\mathrm{V}_{\mathrm{CC}} \quad$ Collector Bias Voltage $\quad \mathrm{I}_{\mathrm{c}}=\beta \mathrm{I}_{\mathrm{b}}$
$V_{b e} \quad$ Voltage drop across Emitter Base Junction $\quad I_{e}=(1+\beta) I_{b}$
$V_{c b} \quad$ Voltage drop across Collector Base Junction $\quad I_{b}=(1-\alpha) I_{e}$
$\mathrm{V}_{\mathrm{ce}} \quad$ Voltage drop from Collector to Emitter $\quad \beta=\alpha(1-\alpha)$
$\alpha=\beta(1+\beta)$
$\alpha \approx 1 \beta=20-2000(100-400)$
Three Regions of BJT operations and required biasing for each:
Active (Linear) \{Amplification\}
Cut-Off \{Open Switch - No Current Flow\}
Saturation \{Closed Switch - High Current Flow\}
Active Region Linear Amplification (High Fidelity - No Distortion)
Emitter/Base Forward Bias
Collector/BaseReverse Bias

Cut-Off Region

Both junctions reversed biased
Emitter/Base voltage insufficient to cause emitter current flow
Zero current (same as open switch)
Saturation Region
Both junctions forward biased
Heavy current conduction (same as closed switch)
Configurations and Characteristics:
Common Base
Unity Current Gain
High Voltage Gain
No phase shift
Common Emitter
180° Phase Shift
High Power Gain (Both High Current and High Voltage Gains)
Most frequently used configuration
Common Collector (Emitter Follower)
Unity Voltage Gain
No phase shift
High Input Impedance \& Low Output Impedance
BJT Amplifiers
Voltage Gain (Av) Current Gain (Ai) Power Gain Input Impedance Output Impedance Phase Shift

$$
\mathbb{Z}
$$

年

$$
\begin{aligned}
& \text { Infinite } \\
& \text { 1-10K Ohm } \\
& >10 \mathrm{~K} \mathrm{Ohm} \\
& \text { < } 1 \mathrm{~K} \mathrm{Ohm}
\end{aligned}
$$

Infinite
$100-1000$
<1
$100-1000$
氺 $p=$ AvAi)
Infinite
>1000
$<A i$
Voltage Gain (Av) Current Gain (Ai)

Ideal
Common Collector (Emitter Follower)

$$
\begin{gathered}
\text { Infinite } \\
100-1000 \\
100-1000 \\
<1
\end{gathered}
$$

$$
\begin{aligned}
& <\mathrm{Al} \\
& <\mathrm{Av}
\end{aligned}
$$

$$
\begin{gathered}
\text { Zero } \\
1-10 \mathrm{~K} \mathrm{Ohm} \\
<1 \mathrm{~K} \mathrm{Ohm} \\
>10 \mathrm{~K} \mathrm{Ohm}
\end{gathered}
$$

Common Base-Biased BJT Amplifier

Base-Biased Common Emitter BJT Amplifier

Emitter-Biased Common Emitter BJT Amplifier

Emitter-Biased Common Collector BJT Amplifier

Transistor Switch

The BJT Inverter

Field Effect Transistors (FET)

FET (JFET \& MOSFET)
P-type \& N-type (Source, Drain, Gate)
Unipolar (majority carriers only)

JFETs are voltage-controlled devices: $\quad v_{0}=\mathrm{a} v_{\mathrm{i}}$
Forward Bias with respect Source \& Drain
P Channel: Source + and Drain - (conventional current flow Source to Drain I_{D})
N Channel: Source - and Drain + (conventional current flow Drain to Source I_{D})
Reverse Bias with respect to Source \& Gate (Max current flow I_{D} when $V_{g s}=0$)
P Channel: Gate more positive than Source causes a decrease in I_{D} current flow
N Channel: Gate more negative than Source causes a decrease in I_{D} current flow
Terminology:
V_{p} (Pinch-Off Voltage)
The V_{DS} voltage at which the current I_{D} levels off $\left(V_{\mathrm{GS}}=0\right)$
I_{DSS} (Drain-Source Saturation Current)
Maximum current flow with $V_{\mathrm{DS}}>V_{\mathrm{P}}$ and $V_{\mathrm{GS}}=0$.
$V_{\mathrm{GS}(o f f)}$ (Gate-to-Source Cutoff Voltage) Note: $V_{\mathrm{P}}=\left|V_{\mathrm{GS}(\text { off })}\right|$
The value of $V_{G S}$ which results in total channel depletion, and hence zero current flow $\left(I_{\mathrm{D}}=0\right)$.
Quiescent (Operating Points)
$I_{D Q}$
$V_{\text {DSQ }}$
Equations:

Self Biased

$$
I_{D}=\frac{-V_{\text {Cs }}}{R_{S}} \quad V_{D s}=V_{D D}-I_{D}\left(R_{0}+R_{s}\right)
$$

Voltage Divider $\quad \mathrm{I}_{\mathrm{D}}=\frac{\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{GS}}}{\mathrm{R}_{\mathrm{S}}} \quad \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{\mathrm{D}}+\mathrm{R}_{\mathrm{s}}\right)$

Field Effect Transistors (FETS)

N CHANNEL JFET

N-CHAN CURVES

P-CHANNEL JFET

P-CHAN CURVES

DRAIN CURRENT (OHMIC REGION)

DRAIN CURRENT
(ACTIVE REGION)

DRAIN-SOURCE
RESISTANCE

ON RESISTANCE

DRAIN-SOURCE
VOLTAGE

TRANSCONDUCTANCE

TRANSCONDUCTANCE
FOR SHORTED GATE
$I_{D}=I_{D S S}\left[2\left(1-\frac{V_{G S}}{V_{G S, \text { off }}}\right) \frac{V_{D S}}{-V_{G S, \text { off }}}-\left(\frac{V_{D S}}{V_{C S, \text { off }}}\right)^{2}\right]$
$I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S, \mathrm{off}}}\right)^{2}$
$R_{D S}=\frac{V_{D S}}{i_{D}} \approx \frac{V_{G S, \text { off }}}{2 I_{D S S}\left(V_{G S}-V_{G S, \text { off }}\right)}=\frac{1}{g_{m}}$
$R_{D S \text {, } \mathrm{A}}=$ constant
$V_{D S}=V_{D}-V_{S}$
$g_{m}=\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{V S}=\frac{1}{R_{D S}}$
$=g_{m_{0}}\left(1-\frac{V_{G S}}{V_{G S, \text { off }}}\right)=g_{m_{0}} \sqrt{\frac{I_{D}}{I_{D S S}}}$
$g_{m_{0}}=\frac{2 I_{D S S}}{V_{G S, \text { off }}}$

Typical JFET values:
$I_{D s s} 1 \mathrm{~mA}$ to 1 A
$V_{\text {GS.off: }}$
-0.5 to -10 V (n-channel)
0.5 to 10 V (p-channel)
$R_{\mathrm{DS}, \text { on }}: 10$ to 1000Ω
$B V_{D s}: 6$ to 50 V
g_{n} at 1 mA :
500 to $3000 \mu \mathrm{mho}$

OHMIC REGION JFET is just beginning to resist. It acts like a variable resistor.

SATURATION REGION JFET is most strongly influenced by gate-source voltage, hardly at all influenced by the drain-source voltage.

CUTOFF VOLTAGE ($V_{G s, o f f}$) Particular gatesource voltage where JFET acts like an open circuit (channel resistance is at its maximum).

BREAKDOWN VOLTAGE ($B V_{D S}$) The voltage across the drain and source that caused current to "break through" the JFET's resistive channel.

DRAIN-CURRENT FOR ZERO BIAS (IOSS) Represents the drain current when gatesource voltage is zero volts (or gate is connected to source, $V_{G S}=0 \mathrm{~V}$).

TRANSCONDUCTANCE (g_{m}) Represents the rate of change in the drain current with the gate-source voltage when the drain-to-source voltage is fixed for a particular $V_{D S}$. It is analogous to the transconductance $\left(1 / R_{t r}\right)$ for bipolar transistors.

(b) Transfer Characteristics
(a) Drain Characteristics

Figure 7-8: Plot of Drain and Transfer Characteristics for an n-channel JFET

Figures 7-6,7, 8. Kazimierczuk Electronic Devices
Source: Electronic Devices a design approach. Ali Aminian and Marian Kazimierczuk, 2004

Three Terminals: Drain, Source, Gate
Majority Carriers Only (Unipolar)
N Channel Electrons
By convention, always draw with Drain at the top
N Type Channel Arrow Pointing IN

Forward Bias Source to Drain VDD
For N Channel

+ to Drain
- to Source

Conventional Current Flow I_{D} (From Drain to Source)
Reverse Bias Gate to Source $\mathrm{I}_{\mathrm{G}}=0$

- to Gate
+ to Source
V_{G} is the Gate to Ground Voltage
V_{GS} is the Gate to Source Voltage
V_{p} (Pinch-Off Voltage) The V_{DS} voltage at which the current I_{D} levels off (for $V_{\mathrm{GS}}=0$)
$V_{\mathrm{GS}(\text { off })}$ (Gate-to-Source Cutoff Voltage $\left.I_{\mathrm{D}}=0\right) \quad \mathrm{V}_{\mathrm{P}}=\left|V_{\mathrm{GS}(\text { off })}\right|$
I_{DSS} (Drain-Source Saturation Current) Maximum current flow with $V_{G S}=0$.
Quiescent (Operating Points)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{DQ}} \\
& \mathrm{~V}_{\mathrm{DSQ}}
\end{aligned}
$$

Shockley's Equation

$$
I_{D}=I_{\mathrm{DSS}}\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{GS}(\text { off })}}\right)^{2}
$$

Notes:
V_{GS} and $\mathrm{V}_{\mathrm{GS}(\text { off })}$ are always the same algebraic sign, so $\mathrm{V}_{\mathrm{GS}} / \mathrm{V}_{\mathrm{GS}(\text { off })}$ will always be positive.
For N Channel, $\mathrm{V}_{\mathrm{GS}(\text { (off })}$ is negative, $\mathrm{V}_{\mathrm{P}}=\left|V_{\mathrm{GS}(\text { off })}\right|$, so $\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1+\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{V}_{\mathrm{P}}}\right)^{2}$
Biasing N Channel JFETs i.e., calculating Quiescent (Operating Points), $I_{D Q}$ and $V_{D S Q}$
$\mathrm{I}_{\mathrm{DSS}}$ and $\mathrm{V}_{\mathrm{GS}(\text { off })}$ are from readily obtainable from Transfer Characteristics Charts
For Fixed Biased, $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GG}}$ (since reversed bias, $\mathrm{I}_{\mathrm{G}}=0, \mathrm{~V}_{\mathrm{RG}}=0, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GG}}$)
For Self Biased and Voltage Divider Biased, V_{GS} is the solution of a quadratic equation.
For BME 3512, $\mathrm{I}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS} \text { (off), }} \mathrm{V}_{\mathrm{GS}}$ will be given.

Examples Biasing N Channel JFETs Determine Quiescent (Operating Points), I_{DQ} and $\mathrm{V}_{\mathrm{DSQ}}$

Fixed Biased

$$
I_{D S S}=12 \mathrm{~mA} \quad V_{G S(o f)}=-4 \mathrm{~V}
$$

A fixed bias circuit
Given: $\mathrm{I}_{\mathrm{DSS}}=12 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{GS}(\mathrm{off})}=-4 \mathrm{~V}$
Since Gate to Source is reverse biased, $\mathrm{I}_{\mathrm{G}}=0$, hence $\mathrm{V}_{\mathrm{Rg}}=\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{g}}=0$
And $\quad \mathrm{V}_{\mathrm{GG}}=\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{g}}+\mathrm{V}_{\mathrm{GS}}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GG}}=0+\mathrm{V}_{\mathrm{GS}} \\
& \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GG}}=-1 \mathrm{~V}
\end{aligned}
$$

From Shockley's Equation

$$
\begin{aligned}
& I_{D}=I_{\mathrm{DSS}}\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{GS} \text { (off) }}}\right)^{2}=\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{GS}(\text { off })}}\right)^{2}=12 \times 10^{-3} \times\left(1-\frac{-1}{-4}\right)^{2}=6.75 \mathrm{~mA} \\
& V_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DS}}+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}} \rightarrow \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}=12-6.75 \times 10^{-3}\left(1 \times 10^{-3}\right)=5.25 \mathrm{~V}
\end{aligned}
$$

Answers: $\mathrm{I}_{\mathrm{DQ}}=6.8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{DSQ}}=5.3 \mathrm{~V}$

Examples Biasing N Channel JFETs Determine Quiescent (Operating Points), $I_{D Q}$ and $V_{D S Q}$

Self-Biased

$$
I_{D S S}=16 \mathrm{~mA} \quad V_{G S(o f f)}=-4 \mathrm{~V}
$$

A self-biased circuit
Given: $\mathrm{I}_{\mathrm{DSS}}=16 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{GS}(\text { off })}=-4 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{GS}}=$ see below
The I_{D} current through R_{S} will develop a voltage across R_{S} such that the Source is at a positive potential with respect to Ground. If any current I_{G} flows at all, the Gate will be at a negative potential with respect to Ground and hence the Gate to Source will be reversed bias resulting in $\mathrm{I}_{\mathrm{G}}=0$, hence $\mathrm{V}_{\mathrm{Rg}}=\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{g}}=0$, and therefore $\mathrm{V}_{\mathrm{G}}($ Gate to Ground $)=0$.

But $\quad V_{G}=V_{G S}+I_{D} R_{S}$

$$
\begin{aligned}
& 0=\mathrm{V}_{\mathrm{GS}}+\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}} \\
& \mathrm{I}_{\mathrm{D}}=-\mathrm{V}_{\mathrm{GS}} / \mathrm{R}_{\mathrm{S}}
\end{aligned}
$$

From $I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S(\text { off })}}\right)^{2}$ and $I_{D}=-V_{G S} / R_{S} \rightarrow \frac{-V_{G S}}{R_{S}}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S(\text { fff })}}\right)^{2}$
Solve for V_{GS} (see page 5 Summary of FET Biasing Equations) Note:
For BME 3512 the value of V_{GS} will be given. $\mathrm{V}_{\mathrm{GS}}=-2.44 \mathrm{~V}$

$$
\mathrm{I}_{\mathrm{D}}=-\mathrm{V}_{\mathrm{GS}} / \mathrm{R}_{\mathrm{S}}=-(-2.44) / 1 \times 10^{3}=2.44 \mathrm{~mA}
$$

$$
\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DS}}+\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{\mathrm{D}}+\mathrm{R}_{\mathrm{S}}\right) \rightarrow \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}}\left(\mathrm{R}_{\mathrm{D}}+\mathrm{R}_{\mathrm{S}}\right)=15-2.44 \times 10^{-3}(1500+1000)=8.9 \mathrm{~V}
$$

Answers: $\quad \mathrm{I}_{\mathrm{DQ}}=2.4 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{DSQ}}=8.9 \mathrm{~V}$

Examples Biasing N Channel JFETs Determine Quiescent (Operating Points), $I_{D Q}$ and $V_{D S Q}$

Voltage Divider Biased

$$
I_{D S S}=12 \mathrm{~mA}
$$

$$
V_{G S(o f)}=-3 \mathrm{~V}
$$

A voltage-divider biased JFET amplifier circuit

Given: $\mathrm{I}_{\mathrm{DSS}}=12 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{GS}(\text { off })}=-3 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{GS}}=$ see below

From the voltage divider network: $\quad V_{G}=V_{D D} \frac{\mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}$

By definition: $V_{G S}=V_{G}-V_{S}=V_{G}-I_{D} R_{S S}$

Hence

$$
I_{D}=\left(V_{G}-V_{G S}\right) / R_{S}
$$

From $I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S(\text { off })}}\right)^{2}$ and $I_{D}=\left(V_{G}-V_{G S}\right) / R_{S} \rightarrow \frac{V_{G}-V_{G S}}{R_{S}}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S(\text { off })}}\right)^{2}$
Solve for V_{GS} (see page 5 Summary of FET Biasing Equations)
Note: For BME 3512 the value of V_{GS} will be given. $\mathrm{V}_{\mathrm{GS}}=-1.31 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{DD}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=15 \frac{150 \mathrm{~K}}{750 \mathrm{~K}+150 \mathrm{~K}}=2.50 \mathrm{~V}
$$

$\mathrm{I}_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{GS}}\right) / \mathrm{R}_{\mathrm{S}}=[2.5-(-1.31)] / 1000=3.81 \mathrm{~mA}$

$$
\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}}\left(\mathbf{R}_{\mathrm{D}}+\mathbf{R}_{\mathrm{S}}\right)=15-3.81 \times 10^{-3}(1500+1000)=5.48 \mathrm{~V}
$$

Answers: $\mathrm{I}_{\mathrm{DQ}}=3.8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{DSQ}}=5.5 \mathrm{~V}$

Self-bias:

$$
\begin{aligned}
& \left.V_{\sigma s}\right|_{n-\text { channel }}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& \left.V_{G S}\right|_{p-\text { channel }}=\frac{+b-\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

where,

$$
\begin{gathered}
a=\frac{I_{D S S} R_{S}}{V_{P}^{2}} \quad b=\frac{2 I_{D S S} R_{S}}{\left|V_{P}\right|}+1 \quad c=I_{D S S} R_{S} \\
I_{D}=\frac{-V_{G S}}{R_{S}} \\
V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)
\end{gathered}
$$

Voltage-divider bias:

$$
\begin{aligned}
& \left.V_{G S}\right|_{n-\text { channel }}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& \left.V_{G S}\right|_{p-\text { channel }}=\frac{+b-\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

where,

$$
\begin{gathered}
a=\frac{I_{D S S} R_{S}}{V_{P}^{2}} \quad b=\frac{2 I_{D S S} R_{S}}{\left|V_{P}\right|}+1 \quad c=I_{D S S} R_{S}-\left|V_{G}\right| \\
I_{D}=\frac{V_{G}-V_{G S}}{R_{S}} \\
V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)
\end{gathered}
$$

