Bipolar Junction Transistors (BJT)

PNP & NPN (Emitter Base Collector)

Note: NPN's are more commonly encountered due to greater ease of production.
 Bipolar (majority and minority carriers)
 Forward voltage characteristics of PN junction (approximately 0.2 volts for Ge and 0.7 volts for Si).

Biasing:

NPN $V_c > V_e$ $V_{be} = +0.7$ PNP $V_e > V_c$ $V_{be} = -0.7$

BJTs are current-controlled devices: Symbology and Voltage / Current Relationships:

V_{BB}	Base Bias Voltage	$I_e = I_c + I_b$
V_{EE}	Emitter Bias Voltage	$I_c = \alpha I_e$
V _{CC}	Collector Bias Voltage	$I_c = \beta I_b$
V _{be}	Voltage drop across Emitter Base Junction	$I_{e} = (1 + \beta) I_{b}$
V _{cb}	Voltage drop across Collector Base Junction	$I_{b} = (1 - \alpha) I_{e}$
V _{ce}	Voltage drop from Collector to Emitter	$\beta = \alpha(1 - \alpha)$
		$\alpha = \beta(1+\beta)$
		$\alpha \approx 1 \beta = 20 - 2000 (100 - 400)$

Three Regions of BJT operations and required biasing for each:

Active (Linear) {Amplification}	Base Emitter Forward, Collector Base Reverse
Cut-Off {Open Switch - No Current Flow}	Base Emitter Reverse, Collector Base Reverse
Saturation {Closed Switch - High Current Flow}	Base Emitter Forward, Collector Base Forward

Active Region Linear Amplification (High Fidelity - No Distortion) Emitter/Base Forward Bias Collector/BaseReverse Bias

Cut-Off Region

Both junctions reversed biased Emitter/Base voltage insufficient to cause emitter current flow Zero current (same as open switch)

Saturation Region

Both junctions forward biased Heavy current conduction (same as closed switch)

Configurations and Characteristics:

Common Base

Unity Current Gain High Voltage Gain No phase shift

Common Emitter

180° Phase Shift High Power Gain (Both High Current and High Voltage Gains) Most frequently used configuration

Common Collector (Emitter Follower) Unity Voltage Gain No phase shift High Input Impedance & Low Output Impedance

Amplifiers
BJT

Phase Shift	N/A 180° 0° 0°				tratn
Output Impedance	Zero 1 - 10K Ohm < 1K Ohm > 10K Ohm	°°° 2≻ +	•	_ 	
Input Impedance	Infinite 1 - 10K Ohm > 10K Ohm < 1K Ohm		<u>م</u>	Input o	₩ ₩ Iı
Power Gain (Ap = AvAi)	Infinite > 1000 < Ai <av< td=""><td></td><td>• Output</td><td></td><td></td></av<>		• Output		
Current Gain (Ai)	Infinite 100 - 1000 100 - 1000 < 1	²⁰ ,+		_∠	
Voltage Gain (Av)	Infinite 100 - 1000 <1 100 - 1000		ά. 	Input o	₩~ Iı
	Ideal Common Emitter Common Collector (Emitter Follower) Common Base				

A common-emitter (CE) amplifier

(a)

A common-collector (CC) amplifier

Ð

Robert T. Paynter Introductory Electronic Devices and Circuits: Electron Flow Version, 6e

BJT Amplifier Configurations

Common Base-Biased BJT Amplifier

Base-Biased Common Emitter BJT Amplifier

Emitter-Biased Common Emitter BJT Amplifier

Emitter-Biased Common Collector BJT Amplifier

The BJT Inverter

FET (JFET & MOSFET)

P-type & N-type (Source, Drain, Gate)

Unipolar (majority carriers only)

JFETs are voltage-controlled devices: $v_0 = av_i$

Forward Bias with respect Source & Drain P Channel: Source + and Drain - (conventional current flow Source to Drain I_D) N Channel: Source - and Drain + (conventional current flow Drain to Source I_D) Reverse Bias with respect to Source & Gate (Max current flow I_D when $V_{gs} = 0$) P Channel: Gate more positive than Source causes a decrease in I_D current flow

N Channel: Gate more negative than Source causes a decrease in I_{D} current flow

Terminology:

 $V_{\rm p}$ (Pinch-Off Voltage)

The $V_{\rm DS}$ voltage at which the current $I_{\rm D}$ levels off ($V_{\rm GS}$ =0)

 I_{DSS} (Drain-Source Saturation Current)

Maximum current flow with $V_{\rm DS} > V_{\rm P}$ and $V_{\rm GS} = 0$.

 $V_{\text{GS}(off)}$ (Gate-to-Source Cutoff Voltage) Note: $V_{\text{P}} = |V_{\text{GS}(off)}|$

The value of V_{GS} which results in total channel depletion, and hence zero current flow $(I_{D} = 0)$.

Quiescent (Operating Points)

```
I<sub>DQ</sub>
```

V_{DSQ}

Equations:

Self Biased
$$I_D = \frac{-V_{GS}}{R_s}$$
 $V_{DS} = V_{DD} - I_D (R_D + R_S)$
Voltage Divider $I_D = \frac{V_G - V_{GS}}{R_S}$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$

Field Effect Transistors (FETS)

N-CHAN CURVES

P-CHANNEL JFET

P-CHAN CURVES

 $-\frac{V_{G}}{V_{S}}$

DRAIN CURRENT (OHMIC REGION)

 $I_{D} = I_{DSS} \left[2 \left(1 - \frac{V_{GS}}{V_{GS,off}} \right) \frac{V_{DS}}{-V_{GS,off}} - \left(\frac{V_{DS}}{V_{GS,off}} \right)^{2} \right]$

DRAIN CURRENT (ACTIVE REGION)

DRAIN-SOURCE RESISTANCE

ON RESISTANCE

DRAIN-SOURCE VOLTAGE

TRANSCONDUCTANCE

TRANSCONDUCTANCE FOR SHORTED GATE

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS, off}} \right)^2$$

 $R_{DS} = \frac{V_{DS}}{i_D} \approx \frac{V_{GS,off}}{2I_{DSS}(V_{GS} - V_{GS,off})} = \frac{1}{g_m}$

 $R_{DS.on} = \text{constant}$

 $V_{DS} = V_D - V_S$

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} \bigg| V_{DS} = \frac{1}{R_{DS}}$$
$$= g_{m_{0}} \bigg(1 - \frac{V_{GS}}{V_{GS,off}} \bigg) = g_{m_{0}} \sqrt{\frac{I_{D}}{I_{DSS}}}$$

$$g_{m_0} = -\frac{2I_{DSS}}{V_{GS,off}}$$

Typical JFET values:

 I_{DSS} : 1 mA to 1 A $V_{GS,off}$: -0.5 to -10 V (*n*-channel) 0.5 to 10 V (*p*-channel) $R_{DS,on}$: 10 to 1000 Ω BV_{DS} : 6 to 50 V g_{m} at 1 mA:

500 to 3000 µmho

OHMIC REGION JFET is just beginning to resist. It acts like a variable resistor.

SATURATION REGION JFET is most strongly influenced by gate-source voltage, hardly at all influenced by the drain-source voltage.

CUTOFF VOLTAGE (V_{GS,off}) Particular gatesource voltage where JFET acts like an open circuit (channel resistance is at its maximum).

BREAKDOWN VOLTAGE (BV_{DS}) The voltage across the drain and source that caused current to "break through" the JFET's resistive channel.

DRAIN-CURRENT FOR ZERO BIAS (l_{oss}) Represents the drain current when gatesource voltage is zero volts (or gate is connected to source, $V_{GS} = 0$ V).

TRANSCONDUCTANCE (g_m) Represents the rate of change in the drain current with the gate-source voltage when the drain-to-source voltage is fixed for a particular V_{DS} . It is analogous to the transconductance $(1/R_{tr})$ for bipolar transistors.

Practical Electronics for Inventors

Figure 7-8: Plot of Drain and Transfer Characteristics for an n-channel JFET

Figures 7-6,7, 8. Kazimierczuk Electronic Devices

Source: Electronic Devices a design approach. Ali Aminian and Marian Kazimierczuk, 2004

Junction Field Effect Transistors JFET

Three Terminals: Drain, Source, Gate Majority Carriers Only (Unipolar) N Channel Electrons By convention, always draw with **Drain** at the top N Type Channel Arrow Pointing IN Forward Bias Source to Drain V_{DD} For N Channel + to Drain - to Source Conventional Current Flow I_D (From Drain to Source) Reverse Bias Gate to Source $I_G = 0$ - to Gate + to Source V_G is the Gate to Ground Voltage V_{GS} is the Gate to Source Voltage $V_{\rm p}$ (Pinch-Off Voltage) The $V_{\rm DS}$ voltage at which the current $I_{\rm D}$ levels off (for $V_{\rm QS} = 0$) $V_{GS(aff)}$ (Gate-to-Source Cutoff Voltage $I_{D} = 0$) $V_{P} = |V_{GS(aff)}|$ I_{DSS} (Drain-Source Saturation Current) Maximum current flow with $V_{\text{CS}} = 0$. Quiescent (Operating Points) I_{DO} V_{DSO} Shockley's Equation

 $\mathbf{I}_{\mathrm{D}} = \mathbf{I}_{\mathrm{DSS}} \left(1 - \frac{\mathbf{V}_{\mathrm{GS}}}{\mathbf{V}_{\mathrm{GS(off)}}} \right)^2$

Notes:

 V_{GS} and $V_{GS(off)}$ are always the same algebraic sign, so V_{GS} / $V_{GS(off)}$ will always be positive.

For N Channel, $V_{GS(off)}$ is negative, $V_P = |V_{GS(off)}|$, so $I_D = I_{DSS} \left(1 + \frac{V_{GS}}{V_P}\right)^2$

Biasing N Channel JFETs i.e., calculating Quiescent (Operating Points), I_{DO} and V_{DSO}

 I_{DSS} and $V_{GS(off)}$ are from readily obtainable from Transfer Characteristics Charts

For Fixed Biased, $V_{GS} = V_{GG}$ (since reversed bias, $I_G = 0$, $V_{RG} = 0$, $V_{GS} = V_{GG}$)

For Self Biased and Voltage Divider Biased, V_{GS} is the solution of a quadratic equation. For BME 3512, I_{DSS} , $V_{GS(off)}$, V_{GS} will be given.

Fixed Biased

A fixed bias circuit

Given: $I_{DSS} = 12 \text{ mA}$ $V_{GS(off)} = -4 \text{ V}$

Since Gate to Source is reverse biased, $I_G=0,$ hence V_{Rg} = $I_G R_g\ = 0$

And
$$V_{GG} = I_G R_g + V_{GS}$$

 $V_{GG} = 0 + V_{GS}$
 $V_{GS} = V_{GG} = -1 V$

From Shockley's Equation

$$\mathbf{I}_{\rm D} = \mathbf{I}_{\rm DSS} \left(1 - \frac{\mathbf{V}_{\rm GS}}{\mathbf{V}_{\rm GS(off)}} \right)^2 = \mathbf{I}_{\rm DSS} \left(1 - \frac{\mathbf{V}_{\rm GS}}{\mathbf{V}_{\rm GS(off)}} \right)^2 = 12 \times 10^{-3} \times \left(1 - \frac{-1}{-4} \right)^2 = 6.75 \text{ mA}$$

$$V_{DD} = V_{DS} + I_D R_D \rightarrow V_{DS} = V_{DD} - I_D R_D = 12 - 6.75 \times 10^{-3} (1 \times 10^{-3}) = 5.25 V$$

Answers: $I_{DQ} = 6.8 \text{ mA}$ and $V_{DSQ} = 5.3 \text{ V}$

Self-Biased

A self-biased circuit

Given: $I_{DSS} = 16 \text{ mA}$ $V_{GS(off)} = -4 \text{ V}$ $V_{GS} = \text{see below}$

The I_D current through R_S will develop a voltage across R_S such that the Source is at a positive potential with respect to Ground. If any current I_G flows at all, the Gate will be at a negative potential with respect to Ground and hence the Gate to Source will be reversed bias resulting in

 $I_G = 0$, hence $V_{Rg} = I_G R_g = 0$, and therefore V_G (Gate to Ground) = 0.

But
$$V_G = V_{GS} + I_D R_S$$

 $0 = V_{GS} + I_D R_S$
 $I_D = -V_{GS} / R_S$

From
$$\mathbf{I}_{D} = \mathbf{I}_{DSS} \left(1 - \frac{\mathbf{V}_{GS}}{\mathbf{V}_{GS(off)}} \right)^{2}$$
 and $\mathbf{I}_{D} = -\mathbf{V}_{GS} / \mathbf{R}_{S} \implies \frac{-\mathbf{V}_{GS}}{\mathbf{R}_{S}} = \mathbf{I}_{DSS} \left(1 - \frac{\mathbf{V}_{GS}}{\mathbf{V}_{GS(off)}} \right)^{2}$

Solve for V_{GS} (see page 5 Summary of FET Biasing Equations) Note:

For BME 3512 the value of V_{GS} will be given. V_{GS} = - 2.44 V

 $I_D = -V_{GS} / R_S = - (-2.44) / 1 \ge 10^3 = 2.44 \text{ mA}$

$$V_{DD} = V_{DS} + I_{D} (R_{D} + R_{S}) \longrightarrow V_{DS} = V_{DD} - I_{D} (R_{D} + R_{S}) = 15 - 2.44 \times 10^{-3} (1500 + 1000) = 8.9 \text{ V}$$

Answers: $I_{DQ} = 2.4 \text{ mA}$ and $V_{DSQ} = 8.9 \text{ V}$

Voltage Divider Biased

A voltage-divider biased JFET amplifier circuit

Given: $I_{DSS} = 12 \text{ mA}$ $V_{GS(off)} = -3 \text{ V}$ $V_{GS} = \text{see below}$

From the voltage divider network: $V_{\rm G} = V_{\rm DD} \frac{R_2}{R_1 + R_2}$

By definition:
$$V_{GS} = V_G - V_S = V_G - I_D R_{SS}$$

 $I_D = (V_G - V_{GS}) / R_S$

From
$$\mathbf{I}_{D} = \mathbf{I}_{DSS} \left(1 - \frac{\mathbf{V}_{GS}}{\mathbf{V}_{GS(off)}} \right)^{2}$$
 and $\mathbf{I}_{D} = (\mathbf{V}_{G} - \mathbf{V}_{GS}) / \mathbf{R}_{S} \longrightarrow \frac{\mathbf{V}_{G} - \mathbf{V}_{GS}}{\mathbf{R}_{S}} = \mathbf{I}_{DSS} \left(1 - \frac{\mathbf{V}_{GS}}{\mathbf{V}_{GS(off)}} \right)^{2}$

Solve for V_{GS} (see page 5 Summary of FET Biasing Equations)

Note: For BME 3512 the value of V_{GS} will be given. V_{GS} = - 1.31 V

$$V_{G} = V_{DD} \frac{R_{2}}{R_{1} + R_{2}} = 15 \frac{150 \text{ K}}{750 \text{ K} + 150 \text{ K}} = 2.50 \text{ V}$$

$$I_D = (V_G - V_{GS}) / R_S = [2.5 - (-1.31)] / 1000 = 3.81 \text{ mA}$$

$$V_{DS} = V_{DD} - I_D (R_D + R_S) = 15 - 3.81 \times 10^{-3} (1500 + 1000) = 5.48 \text{ V}$$

Answers: $I_{DQ} = 3.8 \text{ mA}$ and $V_{DSQ} = 5.5 \text{ V}$

Summary of Equations for the Analysis of Self-Biased and Voltage-Divider Biased JFET Amplifier

Self-bias: $V_{os} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ $V_{GS}\Big|_{a=channel} = \frac{+b - \sqrt{b^2 - 4ac}}{2a}$ where, $a = \frac{I_{DSS}R_s}{V_p^2}$ $b = \frac{2I_{DSS}R_s}{|V_p|} + 1$ $c = I_{DSS}R_s$ $I_D = \frac{-V_{GS}}{R_s}$ $V_{DS} = V_{DD} - I_D(R_D + R_S)$ Voltage-divider bias: $V_{GS}\Big|_{n=channel} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ $V_{GS} = \frac{+b - \sqrt{b^2 - 4ac}}{2a}$ where, $a = \frac{I_{DSS}R_s}{V_p^2}$ $b = \frac{2I_{DSS}R_s}{|V_p|} + 1$ $c = I_{DSS}R_s - |V_g|$ $I_D = \frac{V_G - V_{GS}}{R_c}$ $V_{DS} = V_{DD} - I_D(R_D + R_S)$

Source: Electronic Devices a design approach. Ali Aminian and Marian Kazimierczuk, 2004