Outline

- Introduction
- Real-Time Video Project
- Previous Research
- Goal
- Realistic Constraints
- Budget
- Summary
Introduction

- Wright State’s High Altitude Balloon
 - Team formed in 2005
 - Reaches altitudes of 100,000 feet
 - A multi-disciplinary project

- Large interest from government and industry

- Sponsors
 - Ohio Space Grant Consortium
 - The National Science Foundation
Real-Time Video Project

- Current Video Transmission System
 - Analog
 - Hardware-defined radios
 - Difficult modification
 - Low quality video

- Future Video Transmission System
 - Digital
 - Software-defined radios (SDR)
 - Easy modification
 - Higher quality video
 - Greater flexibility
Previous Research

- Team RadioHead
 - 2010-2011 EE senior design team
 - Initiated SDR research
 - Development on lab system
 - Laptop w/SDR to laptop w/SDR
 - Successful video transmission to 160 meters
 - Development on standalone system
 - Laptop w/SDR to computer-on-module w/SDR
 - Low quality video transmission at small distance
Goal

Achieve real-time video transmission from the balloon via a standalone software-defined radio
Realistic Constraints

- Federal Aviation Administration regulations
- Federal Communication Commission regulations
- Environmental: low temperature, physical stress
- Balloon limited to two 5 pound payloads
- Time: only two quarters for development and testing
Budget

- Majority of equipment already owned
- Purchase an E100 standalone SDR: $1,300
E100 SDR

- Runs a full distribution of Linux
- Can be deployed without a separate host computer
- 750 MHz Processor, 512 MB RAM

Challenges
- New development platform
- Must be programmed
- Must be set up to communicate with our SDRs
Summary

- Introduction
- Real-Time Video Project
- Previous Research
- Goal
- Realistic Constraints
- Budget
- Summary
Questions?

- **Contact:**
 - Greg Taylor: taylor.272@wright.edu
 - Fahad Alenez: alenezi.7@wright.edu
 - Brandon Bayer: bayer.5@wright.edu
 - Tom Holmes: holmes.36@wright.edu

- **Advisor:**
 - Dr. Zhiqiang Wu: zhiqiang.wu@wright.edu