Wright State University High Altitude Balloon Team: Software Defined Radio

Team Radiohead
Chad Morris, Adam Baker, Paul Cary
Advisor: Dr. John Wu
April 22, 2011
Outline

- Goal
- Progress
 - SDR – Digital Video Broadcast
 - Stand alone device
 - Balloon Teams
- Future Work
- Conclusion
Goal

- Provide Wright State University High Altitude Balloon team with a stand alone software defined radio communication system.
- Researched the feasibility of an FPGA based system or a computer on module system.
- Implement system.
Digital Video Broadcast

- Successfully transmitted digital video (winter 2011)
- Prototype Testing
 - Laptops connected to USRP1
- Test Results
 - Great Resolution: 1280 x 1024
 - Acceptable Framerate
 - Familiarized with DVB software
Progress: SDR

Software Defined Radio

The DVB system

Transmitter

Receiver
Progress: SDR
Progress: Standalone Device

- FPGA Design Feasibility
 - Implementation methods
 - Linux
 - Linux operating system
 - IP Cores – Informational Property Core
 - Build Individual logic units to process the data
 - Encoding
 - Signal Processing
 - Device Control
Progress: Standalone Device

- Roadblocks to FPGA
 - Hardware – expensive ($900 - $6000)
 - Software
 - Compatibility issues
 - Steep learning curve

- Outcome
 - Due to cost and time constraints, pursue Computer on Module design
Beagleboard

- **Computer on Module**
 - A type of single board computer (embedded system)
 - Concept lies between a full-up computer and a microcontroller in nature
 - Small in size: 3in x 3in

- **Specifications**
 - Reasons for selection

- **Procedure**
Beagleboard

Specifications

- OMAP 3530 Processor
 - OpenGL 2D/3D graphics accelerator capable of rendering 10 million polygons per second
- TMS320C64x+ DSP
 - HD video capable
 - 430 MHz
- Runs on 5 V
- Completely open source design
Beagleboard

- Procedure
 - Runs linux
 - Ubuntu Netbook Edition
 - Install SDR software
 - Mimic DVB laptop setup
 - Garmin 15L GPS (RS232)
DVB Transistion

- Digital video transmission
 - Achieved and tested Digital Video Broadcast last quarter
 - Linux compatible OMAP processor simplifies duplication of system on new architecture
GPS Integration

- GPS data transmission
 - Garmin 15L
 - Researching methods to interface between GPS and Beagleboard
 - Develop device driver using free RS232 port
Progress: Balloon Teams

- Working closely with mechanical engineering team ‘Chutes and Giggles’
 - Team Leader: Edward McGovern

- Tasks Completed:
 - Target launch date: 04/30/2011
 - Developed flight procedure
 - Designed electrical system
 - Initial wiring and testing

- Tasks Remaining:
 - Cable fabrication
 - Final wiring and device mounting
Flight Procedure

- Launch Date: 4/30/2011

Diagram:

1. Balloon
2. Zero Tension Release (Mechanical Device)
3. Command Package
4. Mechanical Engineering Team Ballute
Flight Procedure

- 30,000 Feet

Nichrome Burn 1: ZTR Safety
Flight Procedure

- 85,000 Feet
Flight Procedure

- Ballute at 65,000 Feet
Flight Procedure

- Approximately 100,000 Feet

Balloon Burst → [Diagram]

ZTR Activation → [Diagram]
Flight Procedure

- Approximately 100,000 Feet
Ballute Payload Wiring

Ballute

Nichrome Housing
Future Work

- Finish transitioning to Beagleboard
- Develop GPS device driver
- Prepare for Balloon Launch
 - Install devices
 - Complete wiring
 - Launch balloon
Questions?

► Contact
 ◦ Adam Baker: baker.180@wright.edu
 ◦ Paul Cary: cary.9@wright.edu
 ◦ Chad Morris: morris.95@wright.edu