UP: REAL-TIME VIDEO TRANSMISSION
MIDTERM PRESENTATION

Leila Carmichael
Meshal Albattah
Nathan Binkley

10th June 2011
Overview

- Antenna Design
- Package Assembly
- Experiments
- Launch
- Video
- Results
- Conclusion
- Questions
Antenna Design

- “Little Wheel” antenna showed poor performance
- SWR was measured and calculated for both antennas

 \[
 \text{SWR} = \frac{1 + \sqrt{P_{\text{REV}}}}{1 - \sqrt{P_{\text{REV}}}} \frac{P_{\text{FWD}}}{P_{\text{REV}}}
 \]

- \(P_{\text{FWD}} = 5\) W

- SWR(ground plane) = 1.923:1
- SWR(little wheel) = 3.422:1
Antenna Design

- Ground Plane Antenna selected due to the performance and SWR
- Tuned to correct frequency
- Used LMR-400 coax to help keep losses minimal
- Tested on spectrum analyzer to see power coming out of transmitter through antenna
Assembly of package took about a week.

Block Diagram:
Package Assembly
Experiments

- RTrak APRS
- Downconverter
- Ground plane antenna
- Mobile receiving station
- 600 TVL color camera
- 6600 mAh battery for transmitter
Launch

- Launch June 7
- Used 1600 gram balloon
- Launched from soccer field in Beavercreek
- Predicted to land in Greenfield/Washington Court House area
- Landed outside Wilmington in a woods
Launch
Video
Results

- Video transmitted up to 115,476 feet
- 600TVL was upgrade but could be improved
- RTrak sent accurate data above 60,000 feet
- Last transmitted altitude was 115,476 feet
- Ranks 31st in HAB record book
- CW beacon aided recovery
- Battery on APRS became unhooked
- Transmitter battery lasted over half of flight
Conclusion

- ATV was a success
- Bigger battery for transmitter
- Receiving station exceeded expectations
- RTrak reliable for future launches
- Future ATV teams will implement Russ antenna with CEG help on code
Questions?

Special thanks to Dr. Wu for being a great advisor and always being there to assist us. Also to Dr. Slater, Bruce Rahn, SteveO, and Nick Baine for their contributions to help make this possible.

Supported by NSF REU Grant 667088 and Ohio Space Consortium.